Skip to main content

A New Quantitative Evaluation Method for Fuzzing

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2019)

Abstract

In order to ensure the network system security, many fuzzing strategies have been proposed recently, how to formally measure the performance of various fuzzing strategies, and choose the optimal strategy to improve the efficiency and effectiveness of vulnerabilities mining are becoming more and more important, this paper designed a fuzzing strategy evaluation framework, generated the taint data graph by the tracker, generated semantic tree by the parser, constructed a mapping from the taint data graph to semantic tree, quantitative calculated strategy performance using effective value and entropy value, selected optimal strategy according to evaluation value. The experiment proved that this method is reasonable and feasible, and optimal strategy selected by it can effectively improve the code coverage and vulnerability exploration effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 47.00
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 59.00
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cai, Z., Chen, M., Chen, S., Qiao, Y.: Searching for widespread events in large networked systems by cooperative monitoring. In: International Conference on Network Protocols, pp. 123–133. IEEE, Francisco (2015)

    Google Scholar 

  2. Liu, Y., Cai, Z.-P., Zhong, P.: Detection approach of DDoS attacks based on conditional random fields. J. Softw. 22(8), 1897–1910 (2011)

    Article  Google Scholar 

  3. Cai, Z., Wang, Z., Zheng, K.: A distributed TCAM coprocessor architecture for integrated longest prefix matching, policy filtering, and content filtering. IEEE Trans. Comput. 62(3), 417–427 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fang, S., et al.: Feature selection method based on class discriminative degree for intelligent medical diagnosis. Comput., Mater. Continua 55(3), 419–433 (2018)

    Google Scholar 

  5. Luo, M., Ke, W., Cai, Z., Liu, A., Li, Y., Cheang, C.F.: Using imbalanced triangle synthetic data for machine learning anomaly detection. Comput., Mater. Continua 55(7), 15–26 (2018)

    Google Scholar 

  6. Cui, J., Zhang, Y., Cai, Z., Liu, A., Li, Y.: Security display path for security sensitive application on mobile devices. Comput., Mater. Continua 55(1), 17–35 (2018)

    Google Scholar 

  7. Tiantian, T., Baosheng, W., Zhou, X., Yong, T.: The new progress in the research of binary vulnerability exploits. In: Xingming, S., Zhaoqing, P., Elisa, B. (eds.) Conference 2018, LNCS, vol. 11064, pp. 277–286. Springer, Heidelberg (2018)

    Google Scholar 

  8. Tiantian, T., Baosheng, W., Zhou, X., Yong, T.: The new progress in the research of binary vulnerability analysis. In: Xingming, S., Zhaoqing, P., Elisa, B. (eds.) Conference 2018, LNCS, vol. 11064, pp. 265–276. Springer, Heidelberg (2018)

    Google Scholar 

  9. Jianjun, X., Sun Lechang, W., Zhiyong, W.H., Jingjv, L.: PNG vulnerability exploiting technique based on fuzzing. Comput. Digit. Eng. 27(8), 2811–2812 (2010)

    Google Scholar 

  10. Lanzi, A., Martignoni, L., Monga, M., et al.: A smart fuzzer for x86 executables. In: Proceeding of the 3rd International Workshop on Software Engineering for Secure Systems, p. 7. IEEE Computer Society, Washington (2007)

    Google Scholar 

  11. Miller, C., Petersonzn, J.: Analysis of mutation and generation based fuzzing. http://securityevaluators.com/files/papers/analysisfuzzing.pdf 01 March 2007

  12. Peach. http://www.peachFuzzer.com 01 June 2009

  13. Lin, S., Xiao-song, Z., Enbiao, S.: New method of software vulnerability detection based on fuzzing. Appl. Res. Comput. 2(5), 99–110 (2016)

    Google Scholar 

  14. Zhiyong, W., Hongchuan, W.: Survey on fuzzing. Appl. Res. Comput. 27(3), 1086–1088 (2010)

    Google Scholar 

  15. Vuagnoux, M.: Autodafe: an act of software torture. http://autodafe.sourceforge.net/docs/autodafe.pdf 05 August 2006

  16. SPIKE proxy. http://www.immunitysec.com/recources-freesoftware.html June 2009

  17. Xu, H., Chapin, S.: Address-space layout randomization using code islands. J. Comput. Secur. 17(3), 331–362 (2009)

    Article  Google Scholar 

  18. Ho, A., Fetterman, M., Clark, C., et al.: Practical taint-based protection using demand emulation. In: Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on Computer Systems, pp. 29–41. ACM Press, New York (2006)

    Google Scholar 

  19. Brooks, C.H., Montanez, N.: Improved annotation of the blogosphere via autotagging and hierarchical clustering. In: Proceedings of the 15th Intenational Conference on World Wide Web, pp. 625–632. ACM Press, New York (2006)

    Google Scholar 

  20. Howard, M., Lipner, S.: Inside the windows security push. IEEE Secur. Priv. 1(1), 57–61 (2003)

    Article  Google Scholar 

  21. Kaksonen, R.: A Functional Method for Assessing Protocol Implementation Security. University of Oulu, Finland (2001)

    Google Scholar 

  22. Home FTP server’s SITE INDEX’ command remote denial of service vulnerability, http://www.securityfocus.com/bid/37033. 16 November 2009

  23. XM easy personal FTP server file/folder remote denial of service vulnerability. http://www.securityfocus.com/bid/37112. 24 November 2009

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tiantian Tan , Baosheng Wang , Haitao Zhang , Guangxuan Chen , Junbin Wang , Yong Tang or Xu Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, T. et al. (2019). A New Quantitative Evaluation Method for Fuzzing. In: Sun, X., Pan, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2019. Lecture Notes in Computer Science(), vol 11633. Springer, Cham. https://doi.org/10.1007/978-3-030-24265-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24265-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24264-0

  • Online ISBN: 978-3-030-24265-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

  NODES
INTERN 3
Note 2