Skip to main content

A Framework for Learning Cell Interestingness from Cube Explorations

  • Conference paper
  • First Online:
Advances in Databases and Information Systems (ADBIS 2019)

Abstract

In this paper, we discuss the problem of organizing the different ways of computing the interestingness of a particular cell derived from a cube in the context of a hierarchical, multidimensional space. We start from an in-depth study of the interestingness aspects in the study of human behavior and include in our survey the approaches taken by computer-science efforts in the area of data mining and user recommendations. We move on to structure interestingness along different fundamental, high level aspects, and, due to their high-level nature, we also move towards much more concrete data-oriented definitions of interestingness aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 70.00
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 87.50
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://en.wikipedia.org/wiki/Interest_(emotion).

  2. 2.

    We do not distinguish between the terms session and exploration in what follows.

  3. 3.

    https://www.meteorite.bi/products/saiku.

  4. 4.

    In this implementation, the user belief is agnostic of measure values, and the metric therefore characterizes how surprising it is that the user visits this particular cell.

References

  1. Aggarwal, C.C.: Data Mining - The Textbook. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14142-8

    Book  MATH  Google Scholar 

  2. Aligon, J., Gallinucci, E., Golfarelli, M., Marcel, P., Rizzi, S.: A collaborative filtering approach for recommending OLAP sessions. Decis. Support Syst. 69, 20–30 (2015)

    Article  Google Scholar 

  3. Bie, T.D.: Subjective interestingness in exploratory data mining. In: Tucker, A., Höppner, F., Siebes, A., Swift, S. (eds.) IDA 2013. LNCS, vol. 8207, pp. 19–31. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41398-8_3

    Chapter  Google Scholar 

  4. Djedaini, M., Drushku, K., Labroche, N., Marcel, P., Peralta, V., Verdeau, W.: Automatic assessment of interactive OLAP explorations. Inf. Syst. 82, 148–163 (2019)

    Article  Google Scholar 

  5. Djedaini, M., Labroche, N., Marcel, P., Peralta, V.: Detecting user focus in OLAP analyses. In: Kirikova, M., Nørvåg, K., Papadopoulos, G.A. (eds.) ADBIS 2017. LNCS, vol. 10509, pp. 105–119. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66917-5_8

    Chapter  Google Scholar 

  6. Eirinaki, M., Abraham, S., Polyzotis, N., Shaikh, N.: QueRIE: collaborative database exploration. IEEE Trans. Knowl. Data Eng. 26(7), 1778–1790 (2014)

    Article  Google Scholar 

  7. Fabris, C.C., Freitas, A.A.: Incorporating deviation-detection functionality into the OLAP paradigm. In: SBBD, pp. 274–285 (2001)

    Google Scholar 

  8. Förster, J., Marguc, J., Gillebaart, M.: Novelty categorization theory. Soc. Pers. Psychol. Compass 4(9), 736–755 (2010)

    Article  Google Scholar 

  9. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM Comput. Surv. 38(3), 9 (2006)

    Article  Google Scholar 

  10. Gkesoulis, D., Vassiliadis, P., Manousis, P.: CineCubes: aiding data workers gain insights from OLAP queries. Inf. Syst. 53, 60–86 (2015)

    Article  Google Scholar 

  11. Gunawardana, A., Shani, G.: A survey of accuracy evaluation metrics of recommendation tasks. J. Mach. Learn. Res. 10, 2935–2962 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan Kaufmann, Burlington (2011)

    MATH  Google Scholar 

  13. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently. In: SIGMOD, pp. 205–216 (1996)

    Article  Google Scholar 

  14. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)

    Article  Google Scholar 

  15. Jensen, C.S., Pedersen, T.B., Thomsen, C.: Multidimensional Databases and Data Warehousing. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, San Rafael (2010)

    Book  Google Scholar 

  16. Kaminskas, M., Bridge, D.: Diversity, serendipity, novelty, and coverage: a survey and empirical analysis of beyond-accuracy objectives in recommender systems. TiiS 7(1), 2:1–2:42 (2017)

    Google Scholar 

  17. Klemettinen, M., Mannila, H., Toivonen, H.: Interactive exploration of interesting findings in the telecommunication network alarm sequence analyzer (TASA). Inf. Softw. Technol. 41(9), 557–567 (1999)

    Article  Google Scholar 

  18. Kumar, N., Gangopadhyay, A., Bapna, S., Karabatis, G., Chen, Z.: Measuring interestingness of discovered skewed patterns in data cubes. Decis. Support Syst. 46(1), 429–439 (2008)

    Article  Google Scholar 

  19. Litman, J.: Curiosity and the pleasures of learning: wanting and liking new information. Cogn. Emot. 19(6), 793–814 (2005)

    Article  Google Scholar 

  20. Reisenzein, R., Meyer, W.U., Niepel, M.: Surprise. In: Ramachandran, V.S. (ed.) Encyclopedia of Human Behavior, 2nd edn. Elsevier, London (2012)

    Google Scholar 

  21. Salimi, B., Gehrke, J., Suciu, D.: Bias in OLAP queries: detection, explanation, and removal. In: SIGMOD, pp. 1021–1035 (2018)

    Google Scholar 

  22. Sarawagi, S.: Explaining differences in multidimensional aggregates. In: Proceedings of VLDB, pp. 42–53 (1999)

    Google Scholar 

  23. Sarawagi, S.: User-adaptive exploration of multidimensional data. In: Proceedings of VLDB, pp. 307–316 (2000)

    Google Scholar 

  24. Sarawagi, S., Agrawal, R., Megiddo, N.: Discovery-driven exploration of OLAP data cubes. In: EDBT, pp. 168–182 (1998)

    Google Scholar 

  25. Sathe, G., Sarawagi, S.: Intelligent rollups in multidimensional OLAP data. In: Proceedings of VLDB, pp. 531–540 (2001)

    Google Scholar 

  26. Yao, Y., Chen, Y., Yang, X.D.: A measurement-theoretic foundation of rule interestingness evaluation. In: Young Lin, T., Ohsuga, S., Liau, C.J., Hu, X. (eds.) Foundations and Novel Approaches in Data Mining. SCI, vol. 9. Springer, Heidelberg (2005). https://doi.org/10.1007/11539827_3

    Chapter  Google Scholar 

  27. Zhao, Z., Stefani, L.D., Zgraggen, E., Binnig, C., Upfal, E., Kraska, T.: Controlling false discoveries during interactive data exploration. In: SIGMOD, pp. 527–540 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Marcel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marcel, P., Peralta, V., Vassiliadis, P. (2019). A Framework for Learning Cell Interestingness from Cube Explorations. In: Welzer, T., Eder, J., Podgorelec, V., Kamišalić Latifić, A. (eds) Advances in Databases and Information Systems. ADBIS 2019. Lecture Notes in Computer Science(), vol 11695. Springer, Cham. https://doi.org/10.1007/978-3-030-28730-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28730-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28729-0

  • Online ISBN: 978-3-030-28730-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

  NODES
Note 3