Skip to main content

Dynamic Bayesian Networks in the Problem of Localizing the Narcotic Substances Distribution

  • Conference paper
  • First Online:
Advances in Intelligent Systems and Computing IV (CSIT 2019)

Abstract

This paper proposed a methodology for the use of static and dynamic Bayesian networks (BN) in the problems of localizing the distribution of narcotic substances. Methods for constructing the BN structure, their parametric training, validation, sensitivity analysis and “What-if” scenario analysis are considered. A model of dynamic Bayesian networks (DBN) for scenario analysis and prediction of the composition of a narcotic substance has been developed. The model was designed in collaboration with law enforcement officers, as well as forensic experts in the selection and quantification of input and output variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 141.50
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 177.00
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vartuzov, V.V., Shkurdota, S.V., Litvinenko, V.I., Fefelov, A.A.: Computerized technology for compiling profiles of narcotic substances. In: Intertechnical System and Resolution of the Problem of Numerical Object 2012, ISRPN, pp. 39–41 (2012)

    Google Scholar 

  2. Shkurdota, S.V., Vartuzov, V.V., Litvinenko, V.I., Fefelov, A.A.: Methods of processing chromatograms for obtaining profiles of narcotic substances. In: Intertechnical System and Resolution of the Problem of Numerical Object 2012, ISRPN, pp. 227–229 (2012)

    Google Scholar 

  3. United Nations International Drug Control Program. United Nations, Vienna, New York, p. 27 (2004)

    Google Scholar 

  4. Bidyuk, P.I., Terentʹyev, O.M., Korshevnyuk, L.O.: Intelektualʹnyy analiz slabostrukturovanykh danykh za dopomohoyu bayyesovykh merezh, No. 3/5-HR, p. 85 (2007). (ukr)

    Google Scholar 

  5. Zhurovsʹkyy, M.Z., Bidyuk, P.I., Terentʹev, O.M.: Systemna metodyka pobudovy bayyesovykh merezh. “Naukovi visti” NTUU “KPI”, no. 4, pp. 47–61 (2007). (ukr)

    Google Scholar 

  6. Bidyuk, P.I., Terentʹyev, O.M., Korshevnyuk, L.O.: Bayyesovskaya set’ – instrument intellektual’nogo analiza dannykh. In: Problemy upravleniya i informatiki. K.: IKI NANU-NKAU, no.4, pp. 83–92 (2007). (rus)

    Google Scholar 

  7. Terentʹev, O.M., Gasanova L.T.: Bayesian networks in credit scoring. In: Second International Conference on Control and Optimization with Industrial Applications (COIA-1008). Institute of Applied Mathematics BSU, Baku, p. 171 (2008)

    Google Scholar 

  8. Andreassen, S., Woldbye, M., Falck, B., Andersen, S.K.: MUNIN - a causal probabilistic network for interpretation of electromyographic findings. In: International Joint Conference on Artificial Intelligence - Proceedings Milan, Italy, pp. 366–372 (1987)

    Google Scholar 

  9. Beinlich, I.A., Suermondt, H.J., Chavez, R.M., Cooper, G.F.: The ALARM monitoring system. In: 2nd European Conference on Artificial Intelligence in Medicine- Proceedings, London, England, pp. 247–256 (1989)

    Google Scholar 

  10. Castillo, E.F., Gutiérrez, J.M., Hadi, A.S.: Sensitivity analysis in discrete Bayesian networks. In: IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, no. 27(4), pp. 412–423 (1997)

    Google Scholar 

  11. Chavez, R.M., Cooper, G.F.: KNET: Integrating hypermedia and normative Bayesian modeling. In: Uncertainty in Artificial Intelligence 4, North-Holland, Amsterdam, pp. 339–349 (1990)

    Google Scholar 

  12. Cheeseman, P., Kelly, M., Taylor, W., Freeman, D., Stutz, J.: Bayesian classification. In: AAAI, St. Paul: MN, pp. 607–611 (1988)

    Google Scholar 

  13. Cooper, G.F.: Current research directions in the development of expert systems based on belief networks. In: Applied Stochastic Models and Data Analysis, no. 5, pp. 39–52 (1989)

    Google Scholar 

  14. Cheng, J., Druzdzel, M.: AIS-BN: an adaptive importance sampling algorithm for evidential reasoning in large bayesian networks. J. Artif. Intell. Res. JAIR-2000 13, 155–188 (2000)

    Google Scholar 

  15. Kayaalp, M., Cooper, G.: A Bayesian network scoring metric that is based on globally uniform parameter priors, pp. 251–258 (2002)

    Google Scholar 

  16. Zweig, G.G.: Speech recognition with dynamic bayesian networks: Ph.D. dissertation. University of California, Berkeley, p. 169 (1998)

    Google Scholar 

  17. Kayaalp, M.M., Cooper, G.F.: Learning dynamic bayesian network structures from data: Ph.D. dissertation. University of Pittsburgh, p. 203 (2003)

    Google Scholar 

  18. Codetta-Raiteri, D., Bobbio, A., Montani, S., Portinale, L.: A dynamic Bayesian network based framework to evaluate cascading effects in a power grid. In: Engineering Applications of Artificial Intelligence, vol. 25\4, pp. 683–697 (2012)

    Google Scholar 

  19. Jone, T.B., Darling, M.C., Groth, K.M., Denman, M.R., Luger, G.F.: A dynamic bayesian network for diagnosing nuclear power plant accidents. In: Proceedings of the Twenty-Ninth International Florida Artificial Intelligence Research Society Conference, pp. 179–184 (2016)

    Google Scholar 

  20. Bescos, C., Schmeink, A., Harris, M., Schmidt, R.: Strategies in the use of static and dynamic bayesian networks in home monitoring. In: IEEE Benelux EMBS Symposium, pp. 31–34 (2007)

    Google Scholar 

  21. Hulst, I.R.: Modeling physiological processes with dynamic bayesian networks. Thesis Paper. University of Pittsburgh (2006)

    Google Scholar 

  22. de Kock, M., Le, H., Tadross, M., Potgeiter, A.: Weather forecasting using dynamic bayesian networks, Technical report, University of Cape Town (2008)

    Google Scholar 

  23. Dean, T., Kanazawa, K.: Probabilistic temporal reasoning (1988)

    Google Scholar 

  24. Murphy, K.P.: Dynamic bayesian networks: representation, inference and learning. Thesis Paper. University of California, Berkeley (2002)

    Google Scholar 

  25. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., Burlington (1988)

    MATH  Google Scholar 

  26. van der Gaag, L.C., Coupé, V.M.: Sensitivity analysis for threshold decision making with Bayesian belief networks. In: Lamma, E., Mello, P. (eds.) AI*IA 99: Advances in Artificial Intelligence, Lecture Notes in Artificial Intelligence, pp. 37–48. Springer, Berlin (1999)

    Google Scholar 

  27. D. S. Laboratory: GeNIe & SMILE (1998). http://genie.sis.pitt.edu/about.html#genie. Accessed 12 Oct 2017

  28. DNV: Det Norske Veritas (2013). http://www.dnv.com/

  29. Murphy, K., Russell, S.: Learning the structure of dynamic probabilistic networks. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (1998)

    Google Scholar 

  30. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. 1–38 (1977)

    Google Scholar 

  31. Friedman, N.: The Bayesian structural EM algorithm. In: Fourteenth conference on Uncertainty in Artificial Intelligence (UAI 1998), Madison, Wisconsin, USA, SF, pp. 129–138. Morgan Kaufmann (1998)

    Google Scholar 

  32. Zhang, Z., Kwok, J., Yeung, D.: Surrogate maximization (minimization) algorithms for AdaBoost and the logistic regression model. In: Proceedings of the Twenty-First International Conference on Machine Learning (ICML 2004), p. 117 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariia Voronenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lytvynenko, V. et al. (2020). Dynamic Bayesian Networks in the Problem of Localizing the Narcotic Substances Distribution. In: Shakhovska, N., Medykovskyy, M.O. (eds) Advances in Intelligent Systems and Computing IV. CSIT 2019. Advances in Intelligent Systems and Computing, vol 1080. Springer, Cham. https://doi.org/10.1007/978-3-030-33695-0_29

Download citation

Publish with us

Policies and ethics

  NODES
INTERN 5
Note 1