Skip to main content

BMBC: Bilateral Motion Estimation with Bilateral Cost Volume for Video Interpolation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

Video interpolation increases the temporal resolution of a video sequence by synthesizing intermediate frames between two consecutive frames. We propose a novel deep-learning-based video interpolation algorithm based on bilateral motion estimation. First, we develop the bilateral motion network with the bilateral cost volume to estimate bilateral motions accurately. Then, we approximate bi-directional motions to predict a different kind of bilateral motions. We then warp the two input frames using the estimated bilateral motions. Next, we develop the dynamic filter generation network to yield dynamic blending filters. Finally, we combine the warped frames using the dynamic blending filters to generate intermediate frames. Experimental results show that the proposed algorithm outperforms the state-of-the-art video interpolation algorithms on several benchmark datasets. The source codes and pre-trained models are available at https://github.com/JunHeum/BMBC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 94.00
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 118.00
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2011). http://vision.middlebury.edu/flow/eval/

    Article  Google Scholar 

  2. Bao, W., Lai, W.S., Ma, C., Zhang, X., Gao, Z., Yang, M.H.: Depth-aware video frame interpolation. In: Proceedings of the IEEE CVPR, pp. 3703–3712 (June 2019)

    Google Scholar 

  3. Bao, W., Lai, W.S., Zhang, X., Gao, Z., Yang, M.H.: MEMC-Net: motion estimation and motion compensation driven neural network for video interpolation and enhancement. IEEE Trans. Pattern Anal. Mach. Intell. (2019)

    Google Scholar 

  4. Choi, B.D., Han, J.W., Kim, C.S., Ko, S.J.: Motion-compensated frame interpolation using bilateral motion estimation and adaptive overlapped block motion compensation. IEEE Trans. Circuits Syst. Video Technol. 17(4), 407–416 (2007)

    Article  Google Scholar 

  5. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: Proceedings of the IEEE ICCV, pp. 2758–2766 (December 2015)

    Google Scholar 

  6. Flynn, J., Neulander, I., Philbin, J., Snavely, N.: DeepStereo: learning to predict new views from the world’s imagery. In: Proceedings of the IEEE CVPR, pp. 5515–5524 (June 2016)

    Google Scholar 

  7. Lu, G., Zhang, X., Chen, L., Gao, Z.: Novel integration of frame rate up conversion and HEVC coding based on rate-distortion optimization. IEEE Trans. Image Process. 27(2), 678–691 (2018)

    Article  MathSciNet  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE CVPR, pp. 770–778 (June 2016)

    Google Scholar 

  9. Hosni, A., Rhemann, C., Bleyer, M., Rother, C., Gelautz, M.: Fast cost-volume filtering for visual correspondence and beyond. IEEE Trans. Pattern Anal. Mach. Intell. 35(2), 504–511 (2013)

    Article  Google Scholar 

  10. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: evolution of optical flow estimation with deep networks. In: Proceedings of the IEEE CVPR, pp. 2462–2470 (July 2017)

    Google Scholar 

  11. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: Proceedings of the NIPS, pp. 2017–2025 (2015)

    Google Scholar 

  12. Jeong, S.G., Lee, C., Kim, C.S.: Motion-compensated frame interpolation based on multihypothesis motion estimation and texture optimization. IEEE Trans. Image Process. 22(11), 4497–4509 (2013)

    Article  MathSciNet  Google Scholar 

  13. Jia, X., De Brabandere, B., Tuytelaars, T., Gool, L.V.: Dynamic filter networks. In: NIPS, pp. 667–675 (2019)

    Google Scholar 

  14. Jiang, H., Sun, D., Jampani, V., Yang, M.H., Learned-Miller, E., Kautz, J.: Super SloMo: high quality estimation of multiple intermediate frames for video interpolation. In: Proceedings of the IEEE CVPR, pp. 9000–9008 (June 2018)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the ICLR (May 2015)

    Google Scholar 

  16. Liu, Y.L., Liao, Y.T., Lin, Y.Y., Chuang, Y.Y.: Deep video frame interpolation using cyclic frame generation. In: Proceedings of the AAAI (January 2019)

    Google Scholar 

  17. Liu, Z., Yeh, R.A., Tang, X., Liu, Y., Agarwala, A.: Video frame synthesis using deep voxel flow. In: Proceedings of the IEEE ICCV, pp. 4463–4471 (October 2017)

    Google Scholar 

  18. Long, G., Kneip, L., Alvarez, J.M., Li, H., Zhang, X., Yu, Q.: Learning image matching by simply watching video. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 434–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_26

    Chapter  Google Scholar 

  19. Meyer, S., Djelouah, A., McWilliams, B., Sorkine-Hornung, A., Gross, M., Schroers, C.: PhaseNet for video frame interpolation. In: Proceedings of the IEEE CVPR, pp. 498–507 (June 2018)

    Google Scholar 

  20. Niklaus, S., Liu, F.: Context-aware synthesis for video frame interpolation. In: Proceedings of the IEEE CVPR, pp. 1701–1710 (June 2018)

    Google Scholar 

  21. Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive convolution. In: Proceedings of the IEEE CVPR, pp. 670–679 (July 2017)

    Google Scholar 

  22. Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive separable convolution. In: Proceedings of the IEEE ICCV, pp. 261–270 (October 2017)

    Google Scholar 

  23. Charbonnier, P., Blanc-Feraud, L., Aubert, G., Barlaud, M.: Two deterministic half-quadratic regularization algorithms for computed imaging. In: Proceedings of the IEEE ICIP, pp. 168–172 (November 1994)

    Google Scholar 

  24. Qifeng Chen, V.K.: Full flow: optical flow estimation by global optimization over regular grids. In: Proceedings of the IEEE CVPR, pp. 4706–4714 (June 2016)

    Google Scholar 

  25. Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network. In: Proceedings of the IEEE CVPR, pp. 4161–4170 (July 2017)

    Google Scholar 

  26. Ren, Z., Yan, J., Ni, B., Liu, B., Yang, X., Zha, H.: Unsupervised deep learning for optical flow estimation. In: Proceedings of the AAAI (February 2017)

    Google Scholar 

  27. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  28. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  29. Su, S., Delbracio, M., Wang, J., Sapiro, G., Heidrich, W., Wang, O.: Deep video deblurring for hand-held cameras. In: Proceedings of the IEEE CVPR, pp. 1279–1288 (June 2017)

    Google Scholar 

  30. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: Proceedings of the IEEE CVPR, pp. 8934–8943 (June 2018)

    Google Scholar 

  31. Xu, J., Ranftl, R., Koltun, V.: Accurate optical flow via direct cost volume processing. In: Proceedings of the IEEE CVPR, pp. 1289–1297 (June 2017)

    Google Scholar 

  32. Xue, T., Chen, B., Wu, J., Wei, D., Freeman, W.T.: Video enhancement with task-oriented flow. IJCV 127(8), 1106–1125 (2019)

    Article  Google Scholar 

  33. Yu, J.J., Harley, A.W., Derpanis, K.G.: Back to basics: unsupervised learning of optical flow via brightness constancy and motion smoothness. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 3–10. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_1

    Chapter  Google Scholar 

  34. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE CVPR, pp. 2472–2481 (June 2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Agency for Defense Development (ADD) and Defense Acquisition Program Administration (DAPA) of Korea under grant UC160016FD and in part by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP) (No. NRF-2018R1A2B3003896 and No. NRF-2019R1A2C4069806).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junheum Park .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 46273 KB)

Supplementary material 2 (pdf 41293 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Park, J., Ko, K., Lee, C., Kim, CS. (2020). BMBC: Bilateral Motion Estimation with Bilateral Cost Volume for Video Interpolation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12359. Springer, Cham. https://doi.org/10.1007/978-3-030-58568-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58568-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58567-9

  • Online ISBN: 978-3-030-58568-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

  NODES
admin 1
Note 2