Skip to main content

Learning Visual Commonsense for Robust Scene Graph Generation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12368))

Included in the following conference series:

  • 4448 Accesses

Abstract

Scene graph generation models understand the scene through object and predicate recognition, but are prone to mistakes due to the challenges of perception in the wild. Perception errors often lead to nonsensical compositions in the output scene graph, which do not follow real-world rules and patterns, and can be corrected using commonsense knowledge. We propose the first method to acquire visual commonsense such as affordance and intuitive physics automatically from data, and use that to improve the robustness of scene understanding. To this end, we extend Transformer models to incorporate the structure of scene graphs, and train our Global-Local Attention Transformer on a scene graph corpus. Once trained, our model can be applied on any scene graph generation model and correct its obvious mistakes, resulting in more semantically plausible scene graphs. Through extensive experiments, we show our model learns commonsense better than any alternative, and improves the accuracy of state-of-the-art scene graph generation methods.

A. Zareian, Z. Wang and H. You—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 94.00
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 118.00
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alain, G., Bengio, Y.: What regularized auto-encoders learn from the data-generating distribution. J. Mach. Learn. Res. 15(1), 3563–3593 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Chen, T., Yu, W., Chen, R., Lin, L.: Knowledge-embedded routing network for scene graph generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6163–6171 (2019)

    Google Scholar 

  3. Chen, X., Li, L.J., Fei-Fei, L., Gupta, A.: Iterative visual reasoning beyond convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7239–7248 (2018)

    Google Scholar 

  4. Chuang, C.Y., Li, J., Torralba, A., Fidler, S.: Learning to act properly: predicting and explaining affordances from images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 975–983 (2018)

    Google Scholar 

  5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  6. Groth, O., Fuchs, F.B., Posner, I., Vedaldi, A.: ShapeStacks: learning vision-based physical intuition for generalised object stacking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 724–739. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_43

    Chapter  Google Scholar 

  7. Gu, J., Zhao, H., Lin, Z., Li, S., Cai, J., Ling, M.: Scene graph generation with external knowledge and image reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1969–1978 (2019)

    Google Scholar 

  8. Jiang, C., Xu, H., Liang, X., Lin, L.: Hybrid knowledge routed modules for large-scale object detection. In: Advances in Neural Information Processing Systems, pp. 1552–1563 (2018)

    Google Scholar 

  9. Kato, K., Li, Y., Gupta, A.: Compositional learning for human object interaction. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 247–264. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_15

    Chapter  Google Scholar 

  10. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  12. Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. 123(1), 32–73 (2017)

    Article  MathSciNet  Google Scholar 

  13. Singh, K.K., Divvala, S., Farhadi, A., Lee, Y.J.: DOCK: detecting objects by transferring common-sense knowledge. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 506–522. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_30

    Chapter  Google Scholar 

  14. Lee, C.W., Fang, W., Yeh, C.K., Frank Wang, Y.C.: Multi-label zero-shot learning with structured knowledge graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1576–1585 (2018)

    Google Scholar 

  15. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural networks. arXiv preprint arXiv:1511.05493 (2015)

  16. Lu, J., Batra, D., Parikh, D., Lee, S.: ViLBERT: pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. In: Advances in Neural Information Processing Systems, pp. 13–23 (2019)

    Google Scholar 

  17. Malinin, A., Gales, M.: Predictive uncertainty estimation via prior networks. In: Advances in Neural Information Processing Systems, pp. 7047–7058 (2018)

    Google Scholar 

  18. Narasimhan, M., Schwing, A.G.: Straight to the facts: learning knowledge base retrieval for factual visual question answering. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 460–477. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_28

    Chapter  Google Scholar 

  19. Qi, M., Wang, Y., Qin, J., Li, A.: KE-GAN: knowledge embedded generative adversarial networks for semi-supervised scene parsing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5237–5246 (2019)

    Google Scholar 

  20. Romaszko, L., Williams, C.K., Moreno, P., Kohli, P.: Vision-as-inverse-graphics: Obtaining a rich 3D explanation of a scene from a single image. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 851–859 (2017)

    Google Scholar 

  21. Speer, R., Chin, J., Havasi, C.: Conceptnet 5.5: an open multilingual graph of general knowledge. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  22. Su, Z., Zhu, C., Dong, Y., Cai, D., Chen, Y., Li, J.: Learning visual knowledge memory networks for visual question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7736–7745 (2018)

    Google Scholar 

  23. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  24. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  25. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103 (2008)

    Google Scholar 

  26. Wang, T., Huang, J., Zhang, H., Sun, Q.: Visual commonsense R-CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10760–10770 (2020)

    Google Scholar 

  27. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  28. Wang, X., Ye, Y., Gupta, A.: Zero-shot recognition via semantic embeddings and knowledge graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6857–6866 (2018)

    Google Scholar 

  29. Xu, D., Zhu, Y., Choy, C.B., Fei-Fei, L.: Scene graph generation by iterative message passing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5410–5419 (2017)

    Google Scholar 

  30. Yang, J., Lu, J., Lee, S., Batra, D., Parikh, D.: Graph R-CNN for scene graph generation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 690–706. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_41

    Chapter  Google Scholar 

  31. Yu, R., Li, A., Morariu, V.I., Davis, L.S.: Visual relationship detection with internal and external linguistic knowledge distillation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1974–1982 (2017)

    Google Scholar 

  32. Zareian, A., Karaman, S., Chang, S.F.: Weakly supervised visual semantic parsing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3736–3745 (2020)

    Google Scholar 

  33. Zellers, R., Bisk, Y., Farhadi, A., Choi, Y.: From recognition to cognition: visual commonsense reasoning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6720–6731 (2019)

    Google Scholar 

  34. Zellers, R., Yatskar, M., Thomson, S., Choi, Y.: Neural motifs: scene graph parsing with global context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5831–5840 (2018)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by Contract N6600119C4032 (NIWC and DARPA). The views expressed are those of the authors and do not reflect the official policy of the Department of Defense or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Zareian .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5161 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zareian, A., Wang, Z., You, H., Chang, SF. (2020). Learning Visual Commonsense for Robust Scene Graph Generation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12368. Springer, Cham. https://doi.org/10.1007/978-3-030-58592-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58592-1_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58591-4

  • Online ISBN: 978-3-030-58592-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

  NODES
INTERN 4
Note 2