Skip to main content

Theta Palindromes in Theta Conjugates

  • Conference paper
  • First Online:
Theory and Practice of Natural Computing (TPNC 2020)

Abstract

A DNA string is a Watson-Crick (WK) palindrome when the complement of its reverse is equal to itself. The Watson-Crick mapping \(\theta \) is an involution that is also an antimorphism. \(\theta \)-conjugates of a word is a generalization of conjugates of a word that incorporates the notion of WK-involution \(\theta \). In this paper, we study the distribution of palindromes and Watson-Crick palindromes, also known as \(\theta \)-palindromes among both the set of conjugates and \(\theta \)-conjugates of a word w. We also consider some general properties of the set \(C_{\theta }(w)\), i.e., the set of \(\theta \)-conjugates of a word w, and characterize words w such that \(|C_{\theta }(w)|=|w|+1\), i.e., with the maximum number of elements in \(C_{\theta }(w)\). We also find the structure of words that have at least one (WK)-palindrome in \(C_{\theta }(w)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 47.00
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 59.00
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amir, A., Aumann, Y., Landau, G.M., Lewenstein, M., Lewenstein, N.: Pattern matching with swaps. J. Algorithms 37(2), 247–266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blanchet-Sadri, F., Luhmann, D.: Conjugacy on partial words. Theoret. Comput. Sci. 289(1), 297–312 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Czeizler, E., Kari, L., Seki, S.: On a special class of primitive words. Theoret. Comput. Sci. 411(3), 617–630 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Daley, M., McQuillan, I.: On computational properties of template-guided DNA recombination. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 27–37. Springer, Heidelberg (2006). https://doi.org/10.1007/11753681_3

    Chapter  MATH  Google Scholar 

  5. Domaratzki, M.: Hairpin structures defined by DNA trajectories. Theory Comput. Syst. 44, 432–454 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Garzon, M.H., Phan, V., Roy, S., Neel, A.J.: In search of optimal codes for DNA computing. In: Mao, C., Yokomori, T. (eds.) DNA 2006. LNCS, vol. 4287, pp. 143–156. Springer, Heidelberg (2006). https://doi.org/10.1007/11925903_11

    Chapter  MATH  Google Scholar 

  7. Guo, C., Shallit, J., Shur, A.M.: On the combinatorics of palindromes and antipalindromes. arXiv e-prints arXiv:1503.09112, March 2015

  8. Hopcroft, J.E., Ullman, J.D.: Formal Languages and Their Relation to Automata. Addison-Wesley Longman Inc., Boston (1969)

    MATH  Google Scholar 

  9. Kari, L., Mahalingam, K.: Watson-Crick conjugate and commutative words. In: Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 273–283. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77962-9_29

    Chapter  MATH  Google Scholar 

  10. Kari, L., Mahalingam, K.: Watson-Crick palindromes in DNA computing. Nat. Comput. 9(2), 297–316 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lipsky, O., Porat, B., Porat, E., Shalom, B.R., Tzur, A.: Approximate string matching with swap and mismatch. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 869–880. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77120-3_75

    Chapter  MATH  Google Scholar 

  12. Lipsky, O., Porat, B., Porat, E., Riva Shalom, B., Tzur, A.: String matching with up to \(k\) swaps and mismatches. Inf. Comput. 208(9), 1020–1030 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  14. de Luca, A., Luca, A.D.: Pseudopalindrome closure operators in free monoids. Theoret. Comput. Sci. 362(1), 282–300 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lyndon, R.C., Schützenberger, M.P.: The equation \(a^{M}=b^{N}c^{P}\) in a free group. Michigan Math. J. 9, 289–298 (1962)

    MathSciNet  MATH  Google Scholar 

  16. Marathe, A., Condon, A., Corn, R.M.: On combinatorial DNA word design. In: DNA Based Computers (1999)

    Google Scholar 

  17. Shyr, H.: Free Monoids and Languages. Hon Min Book Company, Taichung (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palak Pandoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mahalingam, K., Pandoh, P., Maity, A. (2020). Theta Palindromes in Theta Conjugates. In: Martín-Vide, C., Vega-Rodríguez, M.A., Yang, MS. (eds) Theory and Practice of Natural Computing. TPNC 2020. Lecture Notes in Computer Science(), vol 12494. Springer, Cham. https://doi.org/10.1007/978-3-030-63000-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63000-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62999-1

  • Online ISBN: 978-3-030-63000-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

  NODES
INTERN 1
Note 2