Abstract
This chapter proposes a novel optimization model for the project portfolio selection and scheduling problem (PPSSP), as part of the future force design (FFD) process, in the context of the Australian Defence Force (ADF) capability development. The core objective of the problem addressed in this study is to maximize the total portfolio value attained by the selection and scheduling of a set of projects, grouped in various subsets referred to as capability options (COs), while adhering to budgetary, scheduling, and operational constraints. While many of the independent aspects of this problem have been considered in the literature, no existing problem formulation adequately captures all aspects. To solve the proposed model, a custom-built heuristic approach is first developed. Three meta-heuristic approaches are examined to improve upon the heuristic solutions. Experiments are conducted over a set of 108 synthetic problem instances, depicting a wide variety of problem characteristics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For the purposes of this study, the current year is taken as 2021.
References
Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 6(2), 154–160 (1994). https://doi.org/10.1287/ijoc.6.2.154
Blank, J., Deb, K.: Pymoo: Multi-objective optimization in python. IEEE Access 8, 89497–89509 (2020). https://doi.org/10.1109/ACCESS.2020.2990567. https://ieeexplore.ieee.org/document/9078759/
Dawar, D., Ludwig, S.: Differential evolution with dither and annealed scale factor. In: 2014 IEEE Symposium on Differential Evolution, pp. 1–8. IEEE (2014). https://doi.org/10.1109/SDE.2014.7031528
De Spiegeleire, S.: Ten trends in capability planning for defence and security. RUSI J. 156(5), 20–28 (2011). https://doi.org/10.1080/03071847.2011.626270
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)
Department of Defence: 2016 Integrated Investment Program (2016)
Dixit, V., Tiwari, M.K.: Project portfolio selection and scheduling optimization based on risk measure: a conditional value at risk approach. Ann. Oper. Res. 285(1–2), 9–33 (2020). https://doi.org/10.1007/s10479-019-03214-1
Fisher, B., Brimberg, J., Hurley, W.J.: An approximate dynamic programming heuristic to support non-strategic project selection for the royal Canadian navy. J. Def. Model. Simul. 12(2), 83–90 (2015). https://doi.org/10.1177/1548512913509031
Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675 (1937). https://doi.org/10.2307/2279372. https://www.jstor.org/stable/2279372?origin=crossref
Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 11(1), 86–92 (1940). https://doi.org/10.1214/aoms/1177731944. http://projecteuclid.org/euclid.aoms/1177731944
Garcia, C.: A metaheuristic algorithm for project selection and scheduling with due windows and limited inventory capacity. Kybernetes 43(9), 1483–1499 (2014). https://doi.org/10.1108/K-11-2013-0245
Ghasemzadeh, F., Archer, N., Iyogun, P.: A zero-one model for project portfolio selection and scheduling. J. Oper. Res. Soc. 50(7), 745–755 (1999)
Goldschmidt, O., Nehme, D., Yu, G.: Note: On the set-union knapsack problem. Nav. Res. Logist. 41(6), 833–842 (1994). https://doi.org/10.1002/1520-6750(199410)41:6%3c833::AID-NAV3220410611%3e3.0.CO;2-Q
Gonçalves, J.F., Resende, M.G.: Biased random-key genetic algorithms for combinatorial optimization. J. Heuristics 17(5), 487–525 (2011). https://doi.org/10.1007/s10732-010-9143-1
Gonçalves, J.F., Resende, M.G., Toso, R.F.: An experimental comparison of biased and unbiased random-key genetic algorithms. Pesqui. Oper. 34(2), 143–164 (2014). https://doi.org/10.1590/0101-7438.2014.034.02.0143
Harrison, K.R., Elsayed, S., Garanovich, I., Weir, T., Galister, M., Boswell, S., Taylor, R., Sarker, R.: Portfolio optimization for defence applications. IEEE Access 8(1), 60152–60178 (2020). https://doi.org/10.1109/ACCESS.2020.2983141. https://ieeexplore.ieee.org/document/9046777/
Harrison, K.R., Elsayed, S., Garanovich, I.L., Weir, T., Galister, M., Boswell, S., Taylor, R., Sarker, R.: A hybrid multi-population approach to the project portfolio selection and scheduling problem for future force design. IEEE Access 9, 83410–83430 (2021). https://doi.org/10.1109/ACCESS.2021.3086070. https://ieeexplore.ieee.org/document/9446148/
Harrison, K.R., Elsayed, S., Sarker, R.A., Garanovich, I.L., Weir, T., Boswell, S.: Project Portfolio Selection with Defense Capability Options. In: GECCO 2021 - Companion Publication of the 2021 Genetic and Evolutionary Computation Conference, p. 1825–1826. ACM (2021). https://doi.org/10.1145/3449726.3463126
Harrison, K.R., Elsayed, S., Weir, T., Garanovich, I.L., Galister, M., Boswell, S., Taylor, R., Sarker, R.: Multi-period project selection and scheduling for defence capability-based planning. In: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 4044–4050. IEEE (2020). https://doi.org/10.1109/SMC42975.2020.9283334
Harrison, K.R., Elsayed, S., Weir, T., Garanovich, I.L., Taylor, R., Sarker, R.: An exploration of meta-heuristic approaches for the project portfolio selection and scheduling problem in a defence context. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1395–1402. IEEE (2020). https://doi.org/10.1109/SSCI47803.2020.9308608
Hifi, M., Michrafy, M., Sbihi, A.: Heuristic algorithms for the multiple-choice multidimensional knapsack problem. J. Oper. Res. Soc. 55(12), 1323–1332 (2004). https://doi.org/10.1057/palgrave.jors.2601796
Holland, J.H.: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press, Cambridge (1992)
Kellerer, H., Pferschy, U., Pisinger, D.: The multiple-choice knapsack problem. Knapsack Problems, pp. 317–347. Springer, Berlin (2004). https://doi.org/10.1007/978-3-540-24777-7_11
Kumar, M., Mittal, M.L., Soni, G., Joshi, D.: A tabu search algorithm for simultaneous selection and scheduling of projects. In: Yadav, N., Yadav, A., Bansal, J.C., Deep, K., Kim, J.H. (eds.) Harmony Search and Nature Inspired Optimization Algorithms. Advances in Intelligent Systems and Computing, vol. 741, pp. 1111–1121. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0761-4_104
Liu, S.S., Wang, C.J.: Optimizing project selection and scheduling problems with time-dependent resource constraints. Autom. Constr. 20(8), 1110–1119 (2011). https://doi.org/10.1016/j.autcon.2011.04.012. https://linkinghub.elsevier.com/retrieve/pii/S0926580511000665
Price, K.V.: An Introduction to Differential Evolution. New Ideas in Optimization, pp. 79–108. McGraw-Hill Ltd., New York (1999)
Puchinger, J., Raidl, G.R., Pferschy, U.: The multidimensional knapsack problem: structure and algorithms. INFORMS J. Comput. 22(2), 250–265 (2010). https://doi.org/10.1287/ijoc.1090.0344
Shaffer, J.P.: Modified sequentially rejective multiple test procedures. J. Am. Stat. Assoc. 81(395), 826 (1986). https://doi.org/10.2307/2289016
Shafi, K., Elsayed, S., Sarker, R., Ryan, M.: Scenario-based multi-period program optimization for capability-based planning using evolutionary algorithms. Appl. Soft Comput. 56, 717–729 (2017). https://doi.org/10.1016/j.asoc.2016.07.009
Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997). https://doi.org/10.1023/A:1008202821328
Sun, H., Ma, T.: A packing-multiple-boxes model for R&D project selection and scheduling. Technovation 25(11), 1355–1361 (2005). https://doi.org/10.1016/j.technovation.2004.07.010
Wei, Z., Hao, J.K.: Kernel based tabu search for the set-union knapsack problem. Expert. Syst. Appl. 165(August 2020), 113802 (2021). https://doi.org/10.1016/j.eswa.2020.113802. https://linkinghub.elsevier.com/retrieve/pii/S0957417420306199
Acknowledgements
This work was supported by the Australian Department of Defence, Defence Science and Technology Project RG191353.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Harrison, K.R., Elsayed, S.M., Garanovich, I.L., Weir, T., Boswell, S.G., Sarker, R.A. (2022). A New Model for the Project Portfolio Selection and Scheduling Problem with Defence Capability Options. In: Harrison, K.R., Elsayed, S., Garanovich, I.L., Weir, T., Boswell, S.G., Sarker, R.A. (eds) Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling. Adaptation, Learning, and Optimization, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-88315-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-88315-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-88314-0
Online ISBN: 978-3-030-88315-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)