Skip to main content

A New Model for the Project Portfolio Selection and Scheduling Problem with Defence Capability Options

  • Chapter
  • First Online:
Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling

Abstract

This chapter proposes a novel optimization model for the project portfolio selection and scheduling problem (PPSSP), as part of the future force design (FFD) process, in the context of the Australian Defence Force (ADF) capability development. The core objective of the problem addressed in this study is to maximize the total portfolio value attained by the selection and scheduling of a set of projects, grouped in various subsets referred to as capability options (COs), while adhering to budgetary, scheduling, and operational constraints. While many of the independent aspects of this problem have been considered in the literature, no existing problem formulation adequately captures all aspects. To solve the proposed model, a custom-built heuristic approach is first developed. Three meta-heuristic approaches are examined to improve upon the heuristic solutions. Experiments are conducted over a set of 108 synthetic problem instances, depicting a wide variety of problem characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 141.50
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 177.00
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
CHF 177.00
Price excludes VAT (Switzerland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For the purposes of this study, the current year is taken as 2021.

References

  1. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 6(2), 154–160 (1994). https://doi.org/10.1287/ijoc.6.2.154

    Article  MATH  Google Scholar 

  2. Blank, J., Deb, K.: Pymoo: Multi-objective optimization in python. IEEE Access 8, 89497–89509 (2020). https://doi.org/10.1109/ACCESS.2020.2990567. https://ieeexplore.ieee.org/document/9078759/

  3. Dawar, D., Ludwig, S.: Differential evolution with dither and annealed scale factor. In: 2014 IEEE Symposium on Differential Evolution, pp. 1–8. IEEE (2014). https://doi.org/10.1109/SDE.2014.7031528

  4. De Spiegeleire, S.: Ten trends in capability planning for defence and security. RUSI J. 156(5), 20–28 (2011). https://doi.org/10.1080/03071847.2011.626270

  5. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Department of Defence: 2016 Integrated Investment Program (2016)

    Google Scholar 

  7. Dixit, V., Tiwari, M.K.: Project portfolio selection and scheduling optimization based on risk measure: a conditional value at risk approach. Ann. Oper. Res. 285(1–2), 9–33 (2020). https://doi.org/10.1007/s10479-019-03214-1

  8. Fisher, B., Brimberg, J., Hurley, W.J.: An approximate dynamic programming heuristic to support non-strategic project selection for the royal Canadian navy. J. Def. Model. Simul. 12(2), 83–90 (2015). https://doi.org/10.1177/1548512913509031

    Article  Google Scholar 

  9. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675 (1937). https://doi.org/10.2307/2279372. https://www.jstor.org/stable/2279372?origin=crossref

  10. Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 11(1), 86–92 (1940). https://doi.org/10.1214/aoms/1177731944. http://projecteuclid.org/euclid.aoms/1177731944

  11. Garcia, C.: A metaheuristic algorithm for project selection and scheduling with due windows and limited inventory capacity. Kybernetes 43(9), 1483–1499 (2014). https://doi.org/10.1108/K-11-2013-0245

    Article  Google Scholar 

  12. Ghasemzadeh, F., Archer, N., Iyogun, P.: A zero-one model for project portfolio selection and scheduling. J. Oper. Res. Soc. 50(7), 745–755 (1999)

    Article  Google Scholar 

  13. Goldschmidt, O., Nehme, D., Yu, G.: Note: On the set-union knapsack problem. Nav. Res. Logist. 41(6), 833–842 (1994). https://doi.org/10.1002/1520-6750(199410)41:6%3c833::AID-NAV3220410611%3e3.0.CO;2-Q

  14. Gonçalves, J.F., Resende, M.G.: Biased random-key genetic algorithms for combinatorial optimization. J. Heuristics 17(5), 487–525 (2011). https://doi.org/10.1007/s10732-010-9143-1

    Article  Google Scholar 

  15. Gonçalves, J.F., Resende, M.G., Toso, R.F.: An experimental comparison of biased and unbiased random-key genetic algorithms. Pesqui. Oper. 34(2), 143–164 (2014). https://doi.org/10.1590/0101-7438.2014.034.02.0143

    Article  Google Scholar 

  16. Harrison, K.R., Elsayed, S., Garanovich, I., Weir, T., Galister, M., Boswell, S., Taylor, R., Sarker, R.: Portfolio optimization for defence applications. IEEE Access 8(1), 60152–60178 (2020). https://doi.org/10.1109/ACCESS.2020.2983141. https://ieeexplore.ieee.org/document/9046777/

  17. Harrison, K.R., Elsayed, S., Garanovich, I.L., Weir, T., Galister, M., Boswell, S., Taylor, R., Sarker, R.: A hybrid multi-population approach to the project portfolio selection and scheduling problem for future force design. IEEE Access 9, 83410–83430 (2021). https://doi.org/10.1109/ACCESS.2021.3086070. https://ieeexplore.ieee.org/document/9446148/

  18. Harrison, K.R., Elsayed, S., Sarker, R.A., Garanovich, I.L., Weir, T., Boswell, S.: Project Portfolio Selection with Defense Capability Options. In: GECCO 2021 - Companion Publication of the 2021 Genetic and Evolutionary Computation Conference, p. 1825–1826. ACM (2021). https://doi.org/10.1145/3449726.3463126

  19. Harrison, K.R., Elsayed, S., Weir, T., Garanovich, I.L., Galister, M., Boswell, S., Taylor, R., Sarker, R.: Multi-period project selection and scheduling for defence capability-based planning. In: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 4044–4050. IEEE (2020). https://doi.org/10.1109/SMC42975.2020.9283334

  20. Harrison, K.R., Elsayed, S., Weir, T., Garanovich, I.L., Taylor, R., Sarker, R.: An exploration of meta-heuristic approaches for the project portfolio selection and scheduling problem in a defence context. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1395–1402. IEEE (2020). https://doi.org/10.1109/SSCI47803.2020.9308608

  21. Hifi, M., Michrafy, M., Sbihi, A.: Heuristic algorithms for the multiple-choice multidimensional knapsack problem. J. Oper. Res. Soc. 55(12), 1323–1332 (2004). https://doi.org/10.1057/palgrave.jors.2601796

  22. Holland, J.H.: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT Press, Cambridge (1992)

    Google Scholar 

  23. Kellerer, H., Pferschy, U., Pisinger, D.: The multiple-choice knapsack problem. Knapsack Problems, pp. 317–347. Springer, Berlin (2004). https://doi.org/10.1007/978-3-540-24777-7_11

  24. Kumar, M., Mittal, M.L., Soni, G., Joshi, D.: A tabu search algorithm for simultaneous selection and scheduling of projects. In: Yadav, N., Yadav, A., Bansal, J.C., Deep, K., Kim, J.H. (eds.) Harmony Search and Nature Inspired Optimization Algorithms. Advances in Intelligent Systems and Computing, vol. 741, pp. 1111–1121. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0761-4_104

  25. Liu, S.S., Wang, C.J.: Optimizing project selection and scheduling problems with time-dependent resource constraints. Autom. Constr. 20(8), 1110–1119 (2011). https://doi.org/10.1016/j.autcon.2011.04.012. https://linkinghub.elsevier.com/retrieve/pii/S0926580511000665

  26. Price, K.V.: An Introduction to Differential Evolution. New Ideas in Optimization, pp. 79–108. McGraw-Hill Ltd., New York (1999)

    Google Scholar 

  27. Puchinger, J., Raidl, G.R., Pferschy, U.: The multidimensional knapsack problem: structure and algorithms. INFORMS J. Comput. 22(2), 250–265 (2010). https://doi.org/10.1287/ijoc.1090.0344

    Article  MathSciNet  MATH  Google Scholar 

  28. Shaffer, J.P.: Modified sequentially rejective multiple test procedures. J. Am. Stat. Assoc. 81(395), 826 (1986). https://doi.org/10.2307/2289016

  29. Shafi, K., Elsayed, S., Sarker, R., Ryan, M.: Scenario-based multi-period program optimization for capability-based planning using evolutionary algorithms. Appl. Soft Comput. 56, 717–729 (2017). https://doi.org/10.1016/j.asoc.2016.07.009

    Article  Google Scholar 

  30. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997). https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  31. Sun, H., Ma, T.: A packing-multiple-boxes model for R&D project selection and scheduling. Technovation 25(11), 1355–1361 (2005). https://doi.org/10.1016/j.technovation.2004.07.010

    Article  Google Scholar 

  32. Wei, Z., Hao, J.K.: Kernel based tabu search for the set-union knapsack problem. Expert. Syst. Appl. 165(August 2020), 113802 (2021). https://doi.org/10.1016/j.eswa.2020.113802. https://linkinghub.elsevier.com/retrieve/pii/S0957417420306199

Download references

Acknowledgements

This work was supported by the Australian Department of Defence, Defence Science and Technology Project RG191353.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle Robert Harrison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harrison, K.R., Elsayed, S.M., Garanovich, I.L., Weir, T., Boswell, S.G., Sarker, R.A. (2022). A New Model for the Project Portfolio Selection and Scheduling Problem with Defence Capability Options. In: Harrison, K.R., Elsayed, S., Garanovich, I.L., Weir, T., Boswell, S.G., Sarker, R.A. (eds) Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling. Adaptation, Learning, and Optimization, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-88315-7_5

Download citation

Publish with us

Policies and ethics

  NODES
Idea 1
idea 1
INTERN 1
Note 2
Project 24