Skip to main content

Simultaneous Semantic and Instance Segmentation for Colon Nuclei Identification and Counting

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13413))

Included in the following conference series:

  • 2704 Accesses

Abstract

Nucleus segmentation and classification within the Haematoxylin and Eosin stained histology images is a key component in computer-aided image analysis, which helps to extract features with rich information for cellular estimation and following diagnosis. Therefore, it is of great relevance for several downstream computational pathology applications In this work, we address the problem of automatic nuclear segmentation and classification. Our solution is to cast as a simultaneous semantic and instance segmentation framework, and it is part of the Colon Nuclei Identification and Counting (CoNIC) Challenge. Our framework is a carefully designed ensemble model. We first train a semantic and an instance segmentation model separately, where we use as backbone HoverNet and Cascade Mask-RCNN models. We then ensemble the results with a customized Non-Maximum Suppression embedding algorithm. From our experiments, we observe that the semantic segmentation part can achieve an accurate class prediction for the cells whilst the instance information provides a refined segmentation. We enforce a robust segmentation and classification result through our customized embedding algorithm. We demonstrate, through our visual and numerical experimental, that our model outperforms the provided baselines by a large margin. Our solution ranked as the \(4^{th}\) solution on the Grand Challenge CoNIC 2022.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 104.00
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 130.00
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/aleju/imgaug.

  2. 2.

    https://github.com/facebookresearch/detectron2.

References

  1. Cai, Z., Vasconcelos, N.: Cascade r-CNN: Delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6154–6162 (2018)

    Google Scholar 

  2. Cheng, J., Rajapakse, J.C., et al.: Segmentation of clustered nuclei with shape markers and marking function. IEEE Trans. Biomed. Eng. 56(3), 741–748 (2008)

    Article  Google Scholar 

  3. Graham, S., et al.: Lizard: a large-scale dataset for colonic nuclear instance segmentation and classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 684–693 (2021)

    Google Scholar 

  4. Graham, S., et al.: Conic: Colon nuclei identification and counting challenge 2022. arXiv preprint arXiv:2111.14485 (2021)

  5. Graham, S., et al.: Hover-net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images. Med. Image Anal. 58, 101563 (2019)

    Google Scholar 

  6. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  7. Jung, C., Kim, C.: Segmenting clustered nuclei using h-minima transform-based marker extraction and contour parameterization. IEEE Tran. Biomed. Eng. 57(10), 2600–2604 (2010)

    Google Scholar 

  8. Liu, L., Aviles-Rivero, A.I., Schönlieb, C.B.: Contrastive registration for unsupervised medical image segmentation. arXiv preprint arXiv:2011.08894 (2020)

  9. Liu, L., Dou, Q., Chen, H., Olatunji, I.E., Qin, J., Heng, P.-A.: MTMR-net: multi-task deep learning with margin ranking loss for lung nodule analysis. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 74–82. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_9

  10. Liu, L., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Multi-task deep model with margin ranking loss for lung nodule analysis. IEEE Trans. Med. Imaging 39(3), 718–728 (2019)

    Google Scholar 

  11. Liu, L., Hu, X., Zhu, L., Fu, C.W., Qin, J., Heng, P.A.: \(\psi \)-Net: stacking densely convolutional LSTMS for sub-cortical brain structure segmentation. IEEE Trans. Med. Imaging 39(9), 2806–2817 (2020)

    Google Scholar 

  12. Liu, L., Hu, X., Zhu, L., Heng, P.-A.: Probabilistic multilayer regularization network for unsupervised 3D brain image registration. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 346–354. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_39

  13. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-CNN: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)

    Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  15. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 1492–1500 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihao Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, L., Hong, C., Aviles-Rivero, A.I., Schönlieb, CB. (2022). Simultaneous Semantic and Instance Segmentation for Colon Nuclei Identification and Counting. In: Yang, G., Aviles-Rivero, A., Roberts, M., Schönlieb, CB. (eds) Medical Image Understanding and Analysis. MIUA 2022. Lecture Notes in Computer Science, vol 13413. Springer, Cham. https://doi.org/10.1007/978-3-031-12053-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12053-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12052-7

  • Online ISBN: 978-3-031-12053-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

  NODES
INTERN 2
Note 3