Abstract
Nucleus segmentation and classification within the Haematoxylin and Eosin stained histology images is a key component in computer-aided image analysis, which helps to extract features with rich information for cellular estimation and following diagnosis. Therefore, it is of great relevance for several downstream computational pathology applications In this work, we address the problem of automatic nuclear segmentation and classification. Our solution is to cast as a simultaneous semantic and instance segmentation framework, and it is part of the Colon Nuclei Identification and Counting (CoNIC) Challenge. Our framework is a carefully designed ensemble model. We first train a semantic and an instance segmentation model separately, where we use as backbone HoverNet and Cascade Mask-RCNN models. We then ensemble the results with a customized Non-Maximum Suppression embedding algorithm. From our experiments, we observe that the semantic segmentation part can achieve an accurate class prediction for the cells whilst the instance information provides a refined segmentation. We enforce a robust segmentation and classification result through our customized embedding algorithm. We demonstrate, through our visual and numerical experimental, that our model outperforms the provided baselines by a large margin. Our solution ranked as the \(4^{th}\) solution on the Grand Challenge CoNIC 2022.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cai, Z., Vasconcelos, N.: Cascade r-CNN: Delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6154–6162 (2018)
Cheng, J., Rajapakse, J.C., et al.: Segmentation of clustered nuclei with shape markers and marking function. IEEE Trans. Biomed. Eng. 56(3), 741–748 (2008)
Graham, S., et al.: Lizard: a large-scale dataset for colonic nuclear instance segmentation and classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 684–693 (2021)
Graham, S., et al.: Conic: Colon nuclei identification and counting challenge 2022. arXiv preprint arXiv:2111.14485 (2021)
Graham, S., et al.: Hover-net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images. Med. Image Anal. 58, 101563 (2019)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
Jung, C., Kim, C.: Segmenting clustered nuclei using h-minima transform-based marker extraction and contour parameterization. IEEE Tran. Biomed. Eng. 57(10), 2600–2604 (2010)
Liu, L., Aviles-Rivero, A.I., Schönlieb, C.B.: Contrastive registration for unsupervised medical image segmentation. arXiv preprint arXiv:2011.08894 (2020)
Liu, L., Dou, Q., Chen, H., Olatunji, I.E., Qin, J., Heng, P.-A.: MTMR-net: multi-task deep learning with margin ranking loss for lung nodule analysis. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 74–82. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_9
Liu, L., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Multi-task deep model with margin ranking loss for lung nodule analysis. IEEE Trans. Med. Imaging 39(3), 718–728 (2019)
Liu, L., Hu, X., Zhu, L., Fu, C.W., Qin, J., Heng, P.A.: \(\psi \)-Net: stacking densely convolutional LSTMS for sub-cortical brain structure segmentation. IEEE Trans. Med. Imaging 39(9), 2806–2817 (2020)
Liu, L., Hu, X., Zhu, L., Heng, P.-A.: Probabilistic multilayer regularization network for unsupervised 3D brain image registration. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 346–354. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_39
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-CNN: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 1492–1500 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, L., Hong, C., Aviles-Rivero, A.I., Schönlieb, CB. (2022). Simultaneous Semantic and Instance Segmentation for Colon Nuclei Identification and Counting. In: Yang, G., Aviles-Rivero, A., Roberts, M., Schönlieb, CB. (eds) Medical Image Understanding and Analysis. MIUA 2022. Lecture Notes in Computer Science, vol 13413. Springer, Cham. https://doi.org/10.1007/978-3-031-12053-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-12053-4_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-12052-7
Online ISBN: 978-3-031-12053-4
eBook Packages: Computer ScienceComputer Science (R0)