Skip to main content

A Multi-scale Self-supervision Method for Improving Cell Nuclei Segmentation in Pathological Tissues

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2022)

Abstract

Nuclei detection and segmentation in histopathological images is a prerequisite step for quantitative analysis including morphological shape and size to help in identifying cancer prognosis. Digital pathology field aims to improve the quality of cancer diagnosis and has helped pathologists to reduce their efforts and time. Different deep learning architectures are widely used recently in Digital pathology field, yielding promising results in different problems. However, Deep convolutional neural networks (CNNs) need a large subset of labelled data that are not easily available all the time in the field of digital pathology. On the other hand, self-supervision methods are frequently used in different problems with the aim to overcome the lack of labelled data. In this study, we examine the impact of using self-supervision approaches on the segmentation problem. Also, we introduce a new multi-scale self-supervision method based on the zooming factor of the tissue. We compare the proposed method to the basic segmentation method and other popular self-supervision approaches that are used in other applications. The proposed Multi-scale self-supervision approach is applied on two publicly available pathology datasets. The results showed that the proposed approach outperforms Baseline U-Net by 0.2% and 0.02% for nuclei segmentation–mean Aggregated Jaccard Index (AJI), in TNBC and MoNuSeg, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 104.00
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 130.00
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Komura, D., Ishikawa, S.: Machine learning methods for histopathological image analysis. Comput. Struct. Biotechnol. J. 16, 34–42 (2018). https://doi.org/10.1016/J.CSBJ.2018.01.001

    Article  Google Scholar 

  2. Cui, M., Zhang, D.Y.: Artificial intelligence and computational pathology. Lab. Investig. 101(4), 412–422 (2021). https://doi.org/10.1038/s41374-020-00514-0

  3. Barisoni, L., Lafata, K.J., Hewitt, S.M., Madabhushi, A., Balis, U.G.J.: Digital pathology and computational image analysis in nephropathology. Nat. Rev. Nephrol. 16(11), 669–685 (2020). https://doi.org/10.1038/s41581-020-0321-6

  4. He, L., Long, L.R., Antani, S., Thoma, G.R.: Local and global Gaussian mixture models for hematoxylin and eosin stained histology image segmentation. In: 2010 10th International Conference on Hybrid Intelligent Systems, HIS 2010, pp. 223–228 (2010). https://doi.org/10.1109/HIS.2010.5600019

  5. Saha, M., Chakraborty, C., Racoceanu, D.: Efficient deep learning model for mitosis detection using breast histopathology images. Comput. Med. Imaging Graph. 64, 29–40 (2018). https://doi.org/10.1016/J.COMPMEDIMAG.2017.12.001

    Article  Google Scholar 

  6. Balkenhol, M.C.A., et al.: Deep learning assisted mitotic counting for breast cancer. Lab. Investig. 99, 1596–1606 (2019). https://doi.org/10.1038/s41374-019-0275-0

    Article  Google Scholar 

  7. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_51. http://bit.ly/18681Km. Accessed 20 Mar 2022

  8. Jung, H., Lodhi, B., Kang, J.: An automatic nuclei segmentation method based on deep convolutional neural networks for histopathology images. BMC Biomed. Eng. (2019). https://doi.org/10.1186/s42490-019-0026-8

  9. Mahbod, A., et al.: CryoNuSeg: a dataset for nuclei instance segmentation of cryosectioned H&E-stained histological images. Comput. Biol. Med. 132 (2021). https://doi.org/10.1016/j.compbiomed.2021.104349

  10. Naylor, P., Laé, M., Reyal, F., Walter, T.: Segmentation of nuclei in histopathology images by deep regression of the distance map. IEEE Trans. Med. Imaging 38(2), 448–459 (2019). https://doi.org/10.1109/TMI.2018.2865709

    Article  Google Scholar 

  11. Fuchs, T.J., Buhmann, J.M.: Computational pathology: challenges and promises for tissue analysis. Comput. Med. Imaging Graph. 35(7–8), 515–530 (2011). https://doi.org/10.1016/J.COMPMEDIMAG.2011.02.006

    Article  Google Scholar 

  12. Kong, Y., Genchev, G.Z., Wang, X., Zhao, H., Lu, H.: Nuclear segmentation in histopathological images using two-stage stacked U-nets with attention mechanism. Front. Bioeng. Biotechnol. 8 (2020). https://doi.org/10.3389/fbioe.2020.573866

  13. Liu, D., et al.: Nuclei segmentation via a deep panoptic model with semantic feature fusion (2019)

    Google Scholar 

  14. Liu, D., Zhang, D., Song, Y., Huang, H., Cai, W.: Panoptic feature fusion net: a novel instance segmentation paradigm for biomedical and biological images. IEEE Trans. Image Process. 30, 2045–2059 (2021). https://doi.org/10.1109/TIP.2021.3050668

    Article  Google Scholar 

  15. Wang, H., Xian, M., Vakanski, A.: Bending loss regularized network for nuclei segmentation in histopathology images. In: Proceedings - International Symposium on Biomedical Imaging, vol. 2020, pp. 258–262, April 2020. https://doi.org/10.1109/ISBI45749.2020.9098611

  16. Beyer, L., Zhai, X., Oliver, A., Kolesnikov, A.: S4L: self-supervised semi-supervised learning. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2019, pp. 1476–1485, October 2019. https://doi.org/10.1109/ICCV.2019.00156

  17. Doersch, C., Zisserman, A.: Multi-task self-supervised visual learning. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2017, pp. 2070–2079, October 2017. https://doi.org/10.1109/ICCV.2017.226

  18. Lee, W.-H., Ozger, M., Challita, U., Sung, K.W.: Noise learning based denoising autoencoder. IEEE Commun. Lett. 25(9), 2983–2987 (2021)

    Google Scholar 

  19. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction, May 2015. http://arxiv.org/abs/1505.05192

  20. Home - Grand Challenge. https://monuseg.grand-challenge.org/. Accessed 24 Nov 2021

  21. Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 36(7), 1550–1560 (2017). https://doi.org/10.1109/TMI.2017.2677499

    Article  Google Scholar 

  22. The Cancer Genome Atlas Program - National Cancer Institute. https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga. Accessed 25 Nov 2021

  23. Bank, D., Koenigstein, N., Giryes, R.: Autoencoders (2020)

    Google Scholar 

  24. FĂĽrnkranz, J., et al.: Mean squared error. In: Encyclopedia of Machine Learning, p. 653 (2011). https://doi.org/10.1007/978-0-387-30164-8_528

  25. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. http://image-net.org/challenges/LSVRC/2015/. Accessed 27 Mar 2022

  26. Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection (2017)

    Google Scholar 

  27. Kingma, D.P., Lei Ba, J.: Adam: a method for stochastic optimization (2014)

    Google Scholar 

  28. AJI (Aggregated Jaccard Index) enhanced version of IOU, based on connected domain image segmentation results evaluation - Fear Cat. https://blog.fearcat.in/a?ID=01600-351fda84-486d-4296-af30-6d8be0510161. Accessed 25 Nov 2021

  29. Zhang, Z., Sabuncu, M.R.: Generalized cross entropy loss for training deep neural networks with noisy labels (2018)

    Google Scholar 

  30. Segmentation of Nuclei in Histopathology Images by deep regression of the distance map | IEEE DataPort. https://ieee-dataport.org/documents/segmentation-nuclei-histopathology-images-deep-regression-distance-map. Accessed 29 Mar 2022

  31. Zhuang, F., et al.: A comprehensive survey on transfer learning. Proc. IEEE 109(1), 43–76 (2020)

    Google Scholar 

  32. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database, pp. 248–255, March 2010. https://doi.org/10.1109/CVPR.2009.5206848

  33. Sharma, Y., Ehsan, L., Syed, S., Brown, D.E.: HistoTransfer: understanding transfer learning for histopathology (2021)

    Google Scholar 

  34. Schmitz, R., Madesta, F., Nielsen, M., Krause, J., Werner, R., Rösch, T.: Multi-scale fully convolutional neural networks for histopathology image segmentation: from nuclear aberrations to the global tissue architecture, September 2019. https://doi.org/10.1016/j.media.2021.101996

  35. Kosaraju, S.C., Hao, J., Koh, H.M., Kang, M.: Deep-Hipo: multi-scale receptive field deep learning for histopathological image analysis. Methods 179, 3–13 (2020). https://doi.org/10.1016/J.YMETH.2020.05.012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesham Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ali, H., Elattar, M., Selim, S. (2022). A Multi-scale Self-supervision Method for Improving Cell Nuclei Segmentation in Pathological Tissues. In: Yang, G., Aviles-Rivero, A., Roberts, M., Schönlieb, CB. (eds) Medical Image Understanding and Analysis. MIUA 2022. Lecture Notes in Computer Science, vol 13413. Springer, Cham. https://doi.org/10.1007/978-3-031-12053-4_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-12053-4_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-12052-7

  • Online ISBN: 978-3-031-12053-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

  NODES
INTERN 4
Note 2