Abstract
Nuclei detection and segmentation in histopathological images is a prerequisite step for quantitative analysis including morphological shape and size to help in identifying cancer prognosis. Digital pathology field aims to improve the quality of cancer diagnosis and has helped pathologists to reduce their efforts and time. Different deep learning architectures are widely used recently in Digital pathology field, yielding promising results in different problems. However, Deep convolutional neural networks (CNNs) need a large subset of labelled data that are not easily available all the time in the field of digital pathology. On the other hand, self-supervision methods are frequently used in different problems with the aim to overcome the lack of labelled data. In this study, we examine the impact of using self-supervision approaches on the segmentation problem. Also, we introduce a new multi-scale self-supervision method based on the zooming factor of the tissue. We compare the proposed method to the basic segmentation method and other popular self-supervision approaches that are used in other applications. The proposed Multi-scale self-supervision approach is applied on two publicly available pathology datasets. The results showed that the proposed approach outperforms Baseline U-Net by 0.2% and 0.02% for nuclei segmentation–mean Aggregated Jaccard Index (AJI), in TNBC and MoNuSeg, respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Komura, D., Ishikawa, S.: Machine learning methods for histopathological image analysis. Comput. Struct. Biotechnol. J. 16, 34–42 (2018). https://doi.org/10.1016/J.CSBJ.2018.01.001
Cui, M., Zhang, D.Y.: Artificial intelligence and computational pathology. Lab. Investig. 101(4), 412–422 (2021). https://doi.org/10.1038/s41374-020-00514-0
Barisoni, L., Lafata, K.J., Hewitt, S.M., Madabhushi, A., Balis, U.G.J.: Digital pathology and computational image analysis in nephropathology. Nat. Rev. Nephrol. 16(11), 669–685 (2020). https://doi.org/10.1038/s41581-020-0321-6
He, L., Long, L.R., Antani, S., Thoma, G.R.: Local and global Gaussian mixture models for hematoxylin and eosin stained histology image segmentation. In: 2010 10th International Conference on Hybrid Intelligent Systems, HIS 2010, pp. 223–228 (2010). https://doi.org/10.1109/HIS.2010.5600019
Saha, M., Chakraborty, C., Racoceanu, D.: Efficient deep learning model for mitosis detection using breast histopathology images. Comput. Med. Imaging Graph. 64, 29–40 (2018). https://doi.org/10.1016/J.COMPMEDIMAG.2017.12.001
Balkenhol, M.C.A., et al.: Deep learning assisted mitotic counting for breast cancer. Lab. Investig. 99, 1596–1606 (2019). https://doi.org/10.1038/s41374-019-0275-0
Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_51. http://bit.ly/18681Km. Accessed 20 Mar 2022
Jung, H., Lodhi, B., Kang, J.: An automatic nuclei segmentation method based on deep convolutional neural networks for histopathology images. BMC Biomed. Eng. (2019). https://doi.org/10.1186/s42490-019-0026-8
Mahbod, A., et al.: CryoNuSeg: a dataset for nuclei instance segmentation of cryosectioned H&E-stained histological images. Comput. Biol. Med. 132 (2021). https://doi.org/10.1016/j.compbiomed.2021.104349
Naylor, P., Laé, M., Reyal, F., Walter, T.: Segmentation of nuclei in histopathology images by deep regression of the distance map. IEEE Trans. Med. Imaging 38(2), 448–459 (2019). https://doi.org/10.1109/TMI.2018.2865709
Fuchs, T.J., Buhmann, J.M.: Computational pathology: challenges and promises for tissue analysis. Comput. Med. Imaging Graph. 35(7–8), 515–530 (2011). https://doi.org/10.1016/J.COMPMEDIMAG.2011.02.006
Kong, Y., Genchev, G.Z., Wang, X., Zhao, H., Lu, H.: Nuclear segmentation in histopathological images using two-stage stacked U-nets with attention mechanism. Front. Bioeng. Biotechnol. 8 (2020). https://doi.org/10.3389/fbioe.2020.573866
Liu, D., et al.: Nuclei segmentation via a deep panoptic model with semantic feature fusion (2019)
Liu, D., Zhang, D., Song, Y., Huang, H., Cai, W.: Panoptic feature fusion net: a novel instance segmentation paradigm for biomedical and biological images. IEEE Trans. Image Process. 30, 2045–2059 (2021). https://doi.org/10.1109/TIP.2021.3050668
Wang, H., Xian, M., Vakanski, A.: Bending loss regularized network for nuclei segmentation in histopathology images. In: Proceedings - International Symposium on Biomedical Imaging, vol. 2020, pp. 258–262, April 2020. https://doi.org/10.1109/ISBI45749.2020.9098611
Beyer, L., Zhai, X., Oliver, A., Kolesnikov, A.: S4L: self-supervised semi-supervised learning. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2019, pp. 1476–1485, October 2019. https://doi.org/10.1109/ICCV.2019.00156
Doersch, C., Zisserman, A.: Multi-task self-supervised visual learning. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2017, pp. 2070–2079, October 2017. https://doi.org/10.1109/ICCV.2017.226
Lee, W.-H., Ozger, M., Challita, U., Sung, K.W.: Noise learning based denoising autoencoder. IEEE Commun. Lett. 25(9), 2983–2987 (2021)
Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction, May 2015. http://arxiv.org/abs/1505.05192
Home - Grand Challenge. https://monuseg.grand-challenge.org/. Accessed 24 Nov 2021
Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 36(7), 1550–1560 (2017). https://doi.org/10.1109/TMI.2017.2677499
The Cancer Genome Atlas Program - National Cancer Institute. https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga. Accessed 25 Nov 2021
Bank, D., Koenigstein, N., Giryes, R.: Autoencoders (2020)
FĂĽrnkranz, J., et al.: Mean squared error. In: Encyclopedia of Machine Learning, p. 653 (2011). https://doi.org/10.1007/978-0-387-30164-8_528
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. http://image-net.org/challenges/LSVRC/2015/. Accessed 27 Mar 2022
Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection (2017)
Kingma, D.P., Lei Ba, J.: Adam: a method for stochastic optimization (2014)
AJI (Aggregated Jaccard Index) enhanced version of IOU, based on connected domain image segmentation results evaluation - Fear Cat. https://blog.fearcat.in/a?ID=01600-351fda84-486d-4296-af30-6d8be0510161. Accessed 25 Nov 2021
Zhang, Z., Sabuncu, M.R.: Generalized cross entropy loss for training deep neural networks with noisy labels (2018)
Segmentation of Nuclei in Histopathology Images by deep regression of the distance map | IEEE DataPort. https://ieee-dataport.org/documents/segmentation-nuclei-histopathology-images-deep-regression-distance-map. Accessed 29 Mar 2022
Zhuang, F., et al.: A comprehensive survey on transfer learning. Proc. IEEE 109(1), 43–76 (2020)
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database, pp. 248–255, March 2010. https://doi.org/10.1109/CVPR.2009.5206848
Sharma, Y., Ehsan, L., Syed, S., Brown, D.E.: HistoTransfer: understanding transfer learning for histopathology (2021)
Schmitz, R., Madesta, F., Nielsen, M., Krause, J., Werner, R., Rösch, T.: Multi-scale fully convolutional neural networks for histopathology image segmentation: from nuclear aberrations to the global tissue architecture, September 2019. https://doi.org/10.1016/j.media.2021.101996
Kosaraju, S.C., Hao, J., Koh, H.M., Kang, M.: Deep-Hipo: multi-scale receptive field deep learning for histopathological image analysis. Methods 179, 3–13 (2020). https://doi.org/10.1016/J.YMETH.2020.05.012
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ali, H., Elattar, M., Selim, S. (2022). A Multi-scale Self-supervision Method for Improving Cell Nuclei Segmentation in Pathological Tissues. In: Yang, G., Aviles-Rivero, A., Roberts, M., Schönlieb, CB. (eds) Medical Image Understanding and Analysis. MIUA 2022. Lecture Notes in Computer Science, vol 13413. Springer, Cham. https://doi.org/10.1007/978-3-031-12053-4_55
Download citation
DOI: https://doi.org/10.1007/978-3-031-12053-4_55
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-12052-7
Online ISBN: 978-3-031-12053-4
eBook Packages: Computer ScienceComputer Science (R0)