Skip to main content

Stationary Wavelet Entropy and Cat Swarm Optimization to Detect COVID-19

  • Conference paper
  • First Online:
Bioinspired Systems for Translational Applications: From Robotics to Social Engineering (IWINAC 2024)

Abstract

Accurate and efficient approaches are urgently needed to cope with the rapid spread of COVID-19 worldwide. A novel approach is presented in this paper, which combines Stationary Wavelet Entropy (SWE) and Cat Swarm Optimization (CSO) to enhance the precision and effectiveness of COVID-19 detection. SWE, a signal processing technique, extracts informative features from medical data. At the same time, CSO, a bio-inspired optimization algorithm, is used to fine-tune the parameters of a feed-forward neural network. Integrating these two techniques within our methodology addresses the complex and evolving nature of COVID-19 detection tasks. SWE efficiently captures irregularities and patterns in medical data, providing valuable inputs to the neural network, while CSO automates parameter tuning, optimizing the network’s performance. Experimental results demonstrate the efficacy of our approach, showcasing its ability to accurately identify COVID-19 cases in diverse medical datasets. The synergy between SWE and CSO offers a promising avenue for enhancing COVID-19 detection, contributing to the global effort to combat the pandemic.

Supported by the open project of State Key Laboratory of Millimeter Waves (Grant No. K202218), the “Qinglan Project" of Jiangsu University and it is part of the PID2022-137451OB-I00 project funded by the CIN/AEI/10.13039/501100011033 and by FSE+.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 78.00
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 97.00
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kovács, K.D.: Determination of the human impact on the drop in NO2 air pollution due to total COVID-19 lockdown using Human-Influenced Air Pollution Decrease Index (HIAPDI). Environ. Pollut. 306, 119441 (2022)

    Article  Google Scholar 

  2. Díaz, A., Esparcia, C., López, R.: The diversifying role of socially responsible investments during the COVID-19 crisis: A risk management and portfolio performance analysis. Econ. Anal. Policy 75, 39–60 (2022)

    Article  Google Scholar 

  3. Watson, O.J., et al.: Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. Lancet. Infect. Dis 22(9), 1293–1302 (2022)

    Article  Google Scholar 

  4. Yuan, Y., et al.: The development of COVID-19 treatment. Front. Immunol. 14, 1125246 (2023)

    Article  Google Scholar 

  5. Robinson, P.C., et al.: COVID-19 therapeutics: challenges and directions for the future. Proc. Natl. Acad. Sci. 119(15), e2119893119 (2022)

    Article  Google Scholar 

  6. Han, X., et al.: A survey on deep learning in COVID-19 diagnosis. J. Imaging 9(1), 1 (2022)

    Article  Google Scholar 

  7. Górriz, J.M., et al.: Artificial intelligence within the interplay between natural and artificial computation: advances in data science, trends and applications. Neurocomputing 410, 237–270 (2020)

    Article  Google Scholar 

  8. Jiang, X., et al.: COVID-19 diagnosis by multiple-distance gray-level cooccurrence matrix and genetic algorithm. Inter. J. Patient-Centered Healthcare 12(1), 309951 (2022)

    Article  Google Scholar 

  9. Jovanovic, D., et al.: Feature selection by improved sand cat swarm optimizer for intrusion detection. in 2022 International Conference on Artificial Intelligence in Everything (AIE). IEEE (2022)

    Google Scholar 

  10. Wang, J.-J.: COVID-19 diagnosis by wavelet entropy and particle swarm optimization. Intell. Comput. Theories Appli. 13394, 600–611 (2022)

    Article  Google Scholar 

  11. Wang, J., Graham, L.: COVID-19 diagnosis by gray-level cooccurrence matrix and PSO. Inter. J. Patient-Centered Healthcare 12(1), 309118 (2022)

    Article  Google Scholar 

  12. Tang, W.: Gray level co-occurrence matrix and RVFL for Covid-19 Diagnosis. EAI Endorsed Trans. e-Learning 8(2) (2023)

    Google Scholar 

  13. Fernandez-Garcia, M.E., et al.: Double-layer stacked denoising autoencoders for regression. in 9th International Work-Conference on the Interplay Between Natural and Artificial Computation (IWINAC), Puerto de la Cruz, Spain (2022)

    Google Scholar 

  14. Hu, M., et al.: Automated layer-wise solution for ensemble deep randomized feed-forward neural network. Neurocomputing 514, 137–147 (2022)

    Article  Google Scholar 

  15. Xue, Y., Tong, Y., Neri, F.: An ensemble of differential evolution and Adam for training feed-forward neural networks. Inf. Sci. 608, 453–471 (2022)

    Article  Google Scholar 

  16. García-Aguilar, I., et al.: enhanced image segmentation by a novel test time augmentation and super-resolution. In: 9th International Work-Conference on the Interplay Between Natural and Artificial Computation (IWINAC), Puerto de la Cruz, Spain (2022)

    Google Scholar 

  17. Voutsinas, S., et al.: Development of a multi-output feed-forward neural network for fault detection in Photovoltaic Systems. Energy Rep. 8, 33–42 (2022)

    Article  Google Scholar 

  18. Brotons, M.J.E., Cabello, M.A.S., García-Rodríguez, J.: Live TV streaming latency measurement using YOLO. in 9th International Work-Conference on the Interplay Between Natural and Artificial Computation (IWINAC), Puerto de la Cruz, Spain (2022)

    Google Scholar 

  19. Das, S., Dandapat, S.: Automated detection of heart murmurs from the PCG signal using stationary wavelet transform. In: 2022 IEEE 19th India Council International Conference (INDICON). IEEE (2022)

    Google Scholar 

  20. Li, X., Sun, J.: Facial emotion recognition via stationary wavelet entropy and particle swarm optimization. In: Cognitive Systems and Signal Processing in Image Processing, pp. 145–162. Elsevier (2022)

    Google Scholar 

  21. Yao, C.: Hearing loss classification via stationary wavelet entropy and cat swarm optimization. In: Cognitive Systems and Signal Processing in Image Processing, pp. 203–221. Elsevier (2022)

    Google Scholar 

  22. Li, Y., Wang, G.: Sand cat swarm optimization based on stochastic variation with elite collaboration. IEEE Access 10, 89989–90003 (2022)

    Article  Google Scholar 

  23. Mangalampalli, S., Swain, S.K., Mangalampalli, V.K.: Multi objective task scheduling in cloud computing using cat swarm optimization algorithm. Arab. J. Sci. Eng. 47(2), 1821–1830 (2022)

    Article  Google Scholar 

  24. Seyyedabbasi, A.: Binary sand cat swarm optimization algorithm for wrapper feature selection on biological data. Biomimetics 8(3), 310 (2023)

    Article  Google Scholar 

  25. Seyyedabbasi, A., Kiani, F.: Sand cat swarm optimization: a nature-inspired algorithm to solve global optimization problems. Eng. Comput. 39(4), 2627–2651 (2023)

    Article  Google Scholar 

  26. Bahrami, M., Bozorg-Haddad, O., Chu, X.: Cat swarm optimization (CSO) algorithm. Adv. Optimiz. Nature-inspired Algorithms, 9-18 (2018)

    Google Scholar 

  27. Wu, D., et al.: Modified sand cat swarm optimization algorithm for solving constrained engineering optimization problems. Mathematics 10(22), 4350 (2022)

    Article  Google Scholar 

  28. Chu, S.-C., Tsai, P., Pan, J.-S.: Cat swarm optimization. In: Yang, Q., Webb, G. (eds.) PRICAI 2006. LNCS (LNAI), vol. 4099, pp. 854–858. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-36668-3_94

    Chapter  Google Scholar 

  29. Vu, H.L., et al.: Analysis of input set characteristics and variances on k-fold cross validation for a recurrent neural network model on waste disposal rate estimation. J. Environ. Manage. 311, 114869 (2022)

    Article  Google Scholar 

  30. Zhang, X., Liu, C.-A.: Model averaging prediction by K-fold cross-validation. J. Econ. 235(1), 280–301 (2023)

    Article  MathSciNet  Google Scholar 

  31. De Bruin, S., et al.: Dealing with clustered samples for assessing map accuracy by cross-validation. Eco. Inform. 69, 101665 (2022)

    Article  Google Scholar 

  32. Gaye, A., et al.: Extraction and physicomechanical characterisation of Typha Australis fibres: sensitivity to a location in the plant. J. Nat. Fibers 20(1), 2164106 (2023)

    Article  MathSciNet  Google Scholar 

  33. Villanueva-Castellote, Á., et al.: Ex vivo evaluation of antibiotic sensitivity in samples from endodontic infections. J. Oral Microbiol. 15(1), 2160536 (2023)

    Article  Google Scholar 

  34. Han, X.: Covid-19 diagnosis by wavelet entropy and extreme learning machine. EAI Endorsed Trans. e-Learning 8(1), 1–7 (2022)

    Article  Google Scholar 

  35. Tang, W.: Gray level co-occurrence matrix and RVFL for Covid-19 diagnosis. EAI Endorsed Trans. e-Learning 8(2), 1–14 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuwen Chen or Yudong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, M., Chen, S., Wang, J., Wang, S., Gorriz, J.M., Zhang, Y. (2024). Stationary Wavelet Entropy and Cat Swarm Optimization to Detect COVID-19. In: Ferrández Vicente, J.M., Val Calvo, M., Adeli, H. (eds) Bioinspired Systems for Translational Applications: From Robotics to Social Engineering. IWINAC 2024. Lecture Notes in Computer Science, vol 14675. Springer, Cham. https://doi.org/10.1007/978-3-031-61137-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-61137-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-61136-0

  • Online ISBN: 978-3-031-61137-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

  NODES
INTERN 6
Note 2
Project 3