Skip to main content

Image Demoiréing in RAW and sRGB Domains

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15064))

Included in the following conference series:

  • 194 Accesses

Abstract

Moiré patterns frequently appear when capturing screens with smartphones or cameras, potentially compromising image quality. Previous studies suggest that moiré pattern elimination in the RAW domain offers greater effectiveness compared to demoiréing in the sRGB domain. Nevertheless, relying solely on RAW data for image demoiréing is insufficient in mitigating the color cast due to the absence of essential information required for the color correction by the image signal processor (ISP). In this paper, we propose to jointly utilize both RAW and sRGB data for image demoiréing (RRID), which are readily accessible in modern smartphones and DSLR cameras. We develop Skip-Connection-based Demoiréing Module (SCDM) with Gated Feedback Module (GFM) and Frequency Selection Module (FSM) embedded in skip-connections for the efficient and effective demoiréing of RAW and sRGB features, respectively. Subsequently, we design a RGB Guided ISP (RGISP) to learn a device-dependent ISP, assisting the process of color recovery. Extensive experiments demonstrate that our RRID outperforms state-of-the-art approaches, in terms of the performance in moiré pattern removal and color cast correction by 0.62 dB in PSNR and 0.003 in SSIM. Code is available at https://github.com/rebeccaeexu/RRID.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 70.50
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 87.50
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheng, X., Fu, Z., Yang, J.: Multi-scale dynamic feature encoding network for image demoiréing. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3486–3493. IEEE (2019)

    Google Scholar 

  2. Dai, P., et al.: Video demoireing with relation-based temporal consistency. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17622–17631 (2022)

    Google Scholar 

  3. Dong, X., et al.: Abandoning the bayer-filter to see in the dark. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17431–17440 (2022)

    Google Scholar 

  4. Gharbi, M., Chaurasia, G., Paris, S., Durand, F.: Deep joint demosaicking and denoising. ACM Trans. Graph. (ToG) 35(6), 1–12 (2016)

    Article  Google Scholar 

  5. He, B., Wang, C., Shi, B., Duan, L.Y.: Mop moire patterns using mopnet. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2424–2432 (2019)

    Google Scholar 

  6. Denninger, M., Triebel, R.: 3D scene reconstruction from a single viewport. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 51–67. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_4

    Chapter  Google Scholar 

  7. Huang, H., Yang, W., Hu, Y., Liu, J., Duan, L.Y.: Towards low light enhancement with raw images. IEEE Trans. Image Process. 31, 1391–1405 (2022)

    Article  Google Scholar 

  8. Jin, X., Han, L.H., Li, Z., Guo, C.L., Chai, Z., Li, C.: Dnf: decouple and feedback network for seeing in the dark. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18135–18144 (2023)

    Google Scholar 

  9. Khashabi, D., Nowozin, S., Jancsary, J., Fitzgibbon, A.W.: Joint demosaicing and denoising via learned nonparametric random fields. IEEE Trans. Image Process. 23(12), 4968–4981 (2014)

    Article  MathSciNet  Google Scholar 

  10. Kokkinos, F., Lefkimmiatis, S.: Deep image demosaicking using a cascade of convolutional residual denoising networks. In: Proceedings of the European conference on computer vision (ECCV), pp. 303–319 (2018)

    Google Scholar 

  11. Lei, C., Chen, Q.: Robust reflection removal with reflection-free flash-only cues. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14811–14820 (2021)

    Google Scholar 

  12. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: Swinir: image restoration using swin transformer. In: Proceedings of the IEEE/CVF international conference on computer vision, pp. 1833–1844 (2021)

    Google Scholar 

  13. Liu, L., Jia, X., Liu, J., Tian, Q.: Joint demosaicing and denoising with self guidance. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2240–2249 (2020)

    Google Scholar 

  14. Liu, L., et al.: Wavelet-based dual-branch network for image demoiréing. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 86–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_6

    Chapter  Google Scholar 

  15. Liu, S., Li, C., Nan, N., Zong, Z., Song, R.: Mmdm: multi-frame and multi-scale for image demoiréing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 434–435 (2020)

    Google Scholar 

  16. Luo, F., Wu, X., Guo, Y.: And: adversarial neural degradation for learning blind image super-resolution. Adv. Neural Inform. Process. Syst. 36 (2024)

    Google Scholar 

  17. Nakamura, J.: Image sensors and signal processing for digital still cameras. CRC press (2017)

    Google Scholar 

  18. Niu, Y., Lin, Z., Liu, W., Guo, W.: Progressive moire removal and texture complementation for image demoireing. IEEE Trans. Circ. Syst. Video Technol. (2023)

    Google Scholar 

  19. Oh, G., Gu, H., Kim, S., Kim, J.: Fpanet: Frequency-based video demoireing using frame-level post alignment. arXiv preprint arXiv:2301.07330 (2023)

  20. Song, B., Zhou, J., Chen, X., Zhang, S.: Real-scene reflection removal with raw-rgb image pairs. IEEE Trans. Circ. Syst. Video Technol. (2023)

    Google Scholar 

  21. Sun, Y., Yu, Y., Wang, W.: Moiré photo restoration using multiresolution convolutional neural networks. IEEE Trans. Image Process. 27(8), 4160–4172 (2018)

    Article  MathSciNet  Google Scholar 

  22. Wang, C., He, B., Wu, S., Wan, R., Shi, B., Duan, L.Y.: Coarse-to-fine disentangling demoiréing framework for recaptured screen images. IEEE Trans. Pattern Anal. Mach. Intell. (2023)

    Google Scholar 

  23. Wang, H., Tian, Q., Li, L., Guo, X.: Image demoiréing with a dual-domain distilling network. In: 2021 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2021)

    Google Scholar 

  24. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  25. Xing, W., Egiazarian, K.: End-to-end learning for joint image demosaicing, denoising and super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3507–3516 (2021)

    Google Scholar 

  26. Xu, S., Song, B., Chen, X., Zhou, J.: Direction-aware video demoireing with temporal-guided bilateral learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, pp. 6360–6368 (2024)

    Google Scholar 

  27. Yu, X., Dai, P., Li, W., Ma, L., Shen, J., Li, J., Qi, X.: Towards efficient and scale-robust ultra-high-definition image demoiréing. In: European Conference on Computer Vision. pp. 646–662. Springer (2022). https://doi.org/10.1007/978-3-031-19797-0_37

  28. Yue, H., Cheng, Y., Liu, X., Yang, J.: Recaptured raw screen image and video demoireing via channel and spatial modulations. arXiv preprint arXiv:2310.20332 (2023)

  29. Yue, H., Cheng, Y., Mao, Y., Cao, C., Yang, J.: Recaptured screen image demoiréing in raw domain. IEEE Trans. Multimedia (2022)

    Google Scholar 

  30. Yue, H., Zhang, Z., Yang, J.: Real-rawvsr: real-world raw video super-resolution with a benchmark dataset. In: European Conference on Computer Vision. pp. 608–624. Springer (2022). https://doi.org/10.1007/978-3-031-20068-7_35

  31. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  32. Zheng, B., Yuan, S., Slabaugh, G., Leonardis, A.: Image demoireing with learnable bandpass filters. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3636–3645 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by Macau Science and Technology Development Fund under SKLIOTSC-2021-2023, 0072/2020/AMJ, 0022/2022/A, and 0014/2022/AFJ; in part by Research Committee at University of Macau under MYRG-GRG2023-00058-FST-UMDF and MYRG2022-00152-FST; in part by Natural Science Foundation of Guangdong Province of China under EF2023-00116-FST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiantao Zhou .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 15900 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, S., Song, B., Chen, X., Liu, X., Zhou, J. (2025). Image Demoiréing in RAW and sRGB Domains. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15064. Springer, Cham. https://doi.org/10.1007/978-3-031-72658-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72658-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72657-6

  • Online ISBN: 978-3-031-72658-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

  NODES
INTERN 5
Note 2