Skip to main content

Human Versus Machine: Establishing a Human Baseline for Multimodal Location Estimation

  • Chapter
  • First Online:
Multimodal Location Estimation of Videos and Images

Abstract

In recent years, the problem of video location estimation (i.e., estimating the longitude/latitude coordinates of a video without GPS information) has been approached with diverse methods and ideas in the research community and significant improvements have been made. So far, however, systems have only been compared against each other and no systematic study on human performance has been conducted. Based on a human-subject study with 11,900 experiments, this article presents a human baseline for location estimation for different combinations of modalities (audio, audio/video, audio/video/text). Furthermore, this article compares state-of-the-art location estimation systems with the human baseline. Although the overall performance of humans’ multimodal video location estimation is better than current machine learning approaches, the difference is quite small: For 41 % of the test set, the machine’s accuracy was superior to the humans. We present case studies and discuss why machines did better for some videos and not for others. Our analysis suggests new directions and priorities for future work on the improvement of location inference algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 94.00
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 118.00
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
CHF 118.00
Price excludes VAT (Switzerland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://multimediaeval.org/.

  2. 2.

    http://www.flickr.com.

References

  1. S. Chatzichristofis, Y. Boutalis, CEDD: color and edge directivity descriptor: a compact descriptor for image indexing and retrieval, Computer Vision Systems (Springer, Berlin, 2008), pp. 312–322

    Google Scholar 

  2. S. Chatzichristofis, Y. Boutalis, Fcth: Fuzzy color and texture histogram-a low level feature for accurate image retrieval, in Ninth International Workshop on Image Analysis for Multimedia Interactive Services, WIAMIS’08, pp. 191–196. IEEE (2008)

    Google Scholar 

  3. J. Choi, G. Friedland, V. Ekambaram, K. Ramchandran, Multimodal location estimation of consumer media: dealing with sparse training data, in 2012 IEEE International Conference on Multimedia and Expo (ICME). pp. 43–48, IEEE (2012)

    Google Scholar 

  4. J. Choi, H. Lei, V. Ekambaram, P. Kelm, L. Gottlieb, T. Sikora, K. Ramchandran, G. Friedland, Human vs machine: Establishing a human baseline for multimodal location estimation, in Proceedings of the 21st ACM International Conference on Multimedia, MM ’13, pp. 867–876. ACM, New York, USA (2013)

    Google Scholar 

  5. L. Gottlieb, J. Choi, G. Friedland, P. Kelm, T. Sikora. Pushing the limits of Mechanical Turk: qualifying the crowd for video geo-location, in Proceedings of the 2012 ACM Workshop on Crowdsourcing for Multimedia (CrowdMM) (2012)

    Google Scholar 

  6. A. Hatch, S. Kajarekar, A. Stolcke, Within-class covariance normalization for SVM-based speaker recognition, in Proceedings of ISCA Interspeech, vol. 4 (2006)

    Google Scholar 

  7. J. Hays, A. Efros, IM2GPS: estimating geographic information from a single image, in IEEE CVPR 2008, pp. 1–8 (2008)

    Google Scholar 

  8. S. Ioffe, Probabilistic linear discriminant analysis, Computer Vision-ECCV (Springer, Berlin, 2006), pp. 531–542

    Google Scholar 

  9. P.G. Ipeirotis, Analyzing the Amazon Mechanical Turk marketplace. XRDS 17(2), 16–21 (2010)

    Google Scholar 

  10. D. Karger, S. Oh, D. Shah, Budget-optimal crowdsourcing using low-rank matrix approximations, in 49th Annual Allerton Conference Communication, Control, and Computing (Allerton) 2011, pp. 284–291, September 2011

    Google Scholar 

  11. P. Kelm, S. Schmiedeke, T. Sikora, A hierarchical, multi-modal approach for placing videos on the map using millions of Flickr photographs, in Proceedings of SBNMA ’11, pp. 15–20. ACM, New York, USA (2011)

    Google Scholar 

  12. A. Kittur, E. H. Chi, B. Suh, Crowdsourcing user studies with Mechanical Turk, in Proceedings of the Twenty-Sixth Annual SIGCHI Conference on Human Factors in Computing Systems, CHI ’08, pp. 453–456. ACM, New York, USA (2008)

    Google Scholar 

  13. M. Larson, M. Soleymani, P. Serdyukov, S. Rudinac, C. Wartena, V. Murdock, G. Friedland, R. Ordelman, G. J. Jones, Automatic tagging and geo-tagging in video collections and communities, in ACM International Conference on Multimedia Retrieval (ICMR 2011), pp. 51:1-51:8, April 2011

    Google Scholar 

  14. H. Lei, J. Choi, G. Friedland, City-Identification on Flickr Videos Using Acoustic Features. Technical report, ICSI Technical Report TR-11-001, 2011

    Google Scholar 

  15. D.M. Mount, S. Arya, ANN: A library for approximate nearest neighbor searching, in CGC 2nd Annual Fall Workshop on Computational Geometry, pp. 153 (1997)

    Google Scholar 

  16. A. Oliva, A. Torralba, Building the gist of a scene: the role of global image features in recognition. Prog. Brain Res. 155, 23–36 (2006)

    Article  Google Scholar 

  17. M.C. Palmer, Calculation of distance traveled by fishing vessels using GPS positional data: a theoretical evaluation of the sources of error. Fish. Res. 89(1), 57–64 (2008)

    Google Scholar 

  18. B. Russell, A. Torralba, K. Murphy, W. Freeman, LabelMe: a database and web-based tool for image annotation. Int. J. Comput. Vision 77, 157–173 (2008). doi:10.1007/s11263-007-0090-8

  19. M. Soufifar, M. Kockmann, L. Burget, O. Plchot, O. Glembek, T. Svendsen, iVector approach to phonotactic language recognition, in Proceedings of Interspeech, pp. 2913–2916 (2011)

    Google Scholar 

  20. H. Tamura, S. Mori, T. Yamawaki, Textural features corresponding to visual perception. IEEE Trans. Syst. Man Cybern. 8(6), 460–473 (1978)

    Article  Google Scholar 

  21. M. Wainwright, M. Jordan, Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn. 1, 1–305 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeyoung Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Choi, J. et al. (2015). Human Versus Machine: Establishing a Human Baseline for Multimodal Location Estimation. In: Choi, J., Friedland, G. (eds) Multimodal Location Estimation of Videos and Images. Springer, Cham. https://doi.org/10.1007/978-3-319-09861-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09861-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09860-9

  • Online ISBN: 978-3-319-09861-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

  NODES
chat 2
COMMUNITY 1
Idea 1
idea 1
INTERN 8
Note 1