Skip to main content

Boosting Financial Trend Prediction with Twitter Mood Based on Selective Hidden Markov Models

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9050))

Included in the following conference series:

  • 1909 Accesses

Abstract

Financial trend prediction has been a hot topic in both academia and industry. This paper proposes to exploit Twitter mood to boost financial trend prediction based on selective hidden Markov models (sHMM). First, we expand the profile of mood states (POMS) Bipolar lexicon to extract rich society moods from massive tweets. Then, we determine which mood has the most predictive power on the financial index based on Granger causality analysis (GCA). Finally, we extend sHMM to combine financial index and the selected Twitter mood to predict next-day trend. Extensive experiments show that our method not only outperforms the state-of-the-art methods, but also provides controllability to financial trend prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 47.00
Price excludes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 59.00
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains. The annals of mathematical statistics 41(1), 164–171 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. Journal of Computational Science 2(1), 1–8 (2011)

    Article  Google Scholar 

  3. Brand, M.: Coupled hidden markov models for modeling interacting processes. Tech. rep., MIT (1997)

    Google Scholar 

  4. Chow, C.K.: On optimum recognition error and reject tradeoff. IEEE Transactions on Information Theory 16(1), 41–46 (1970)

    Article  MATH  Google Scholar 

  5. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995). http://dx.doi.org/10.1007/BF00994018

    MATH  Google Scholar 

  6. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Communications of the ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  7. El-Yaniv, R., Wiener, Y.: On the foundations of noise-free selective classification. The Journal of Machine Learning Research 11, 1605–1641 (2010)

    MATH  MathSciNet  Google Scholar 

  8. Gilbert, E., Karahalios, K.: Widespread worry and the stock market. In: Proceedings of the Fourth International Conference on Weblogs and Social Media, pp. 59–65 (2010)

    Google Scholar 

  9. Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica: Journal of the Econometric Society 37(3), 424–438 (1969)

    Article  MathSciNet  Google Scholar 

  10. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 168–177 (2004)

    Google Scholar 

  11. Idvall, P., Jonsson, C.: Algorithmic trading: hidden markov models on foreign exchange data. Master’s thesis, Södertörn University (2008)

    Google Scholar 

  12. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the Eighteenth International Conference on Machine Learning, pp. 282–289 (2001). http://dl.acm.org/citation.cfm?id=645530.655813

  13. Li, R., Wang, S., Deng, H., Wang, R., Chang, K.C.C.: Towards social user profiling: unified and discriminative influence model for inferring home locations. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1023–1031 (2012). http://doi.acm.org/10.1145/2339530.2339692

  14. Li, X., Wang, C., Dong, J., Wang, F., Deng, X., Zhu, S.: Improving stock market prediction by integrating both market news and stock prices. In: Hameurlain, A., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011, Part II. LNCS, vol. 6861, pp. 279–293. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Lin, Y., Guo, H., Hu, J.: An svm-based approach for stock market trend prediction. In: The 2013 International Joint Conference on Neural Networks, pp. 1–7 (2013)

    Google Scholar 

  16. Liu, B.: Sentiment analysis and subjectivity. In: Handbook of Natural Language Processing, 2nd edn (2010)

    Google Scholar 

  17. Liu, B.: Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers (2012)

    Google Scholar 

  18. McNair, D.M., Lorr, M., Droppleman, L.F.: Profile of mood states. Educational and Industrial Testing Service (1971)

    Google Scholar 

  19. Miller, G.A.: Wordnet: a lexical database for english. Communications of the ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  20. Mittal, A., Goel, A.: Stock prediction using twitter sentiment analysis. Tech. rep., Stanford University

    Google Scholar 

  21. Nofsinger, J.R.: Social mood and financial economics. The Journal of Behavioral Finance 6(3), 144–160 (2005)

    Article  Google Scholar 

  22. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2(1–2), 1–135 (2008). http://dx.doi.org/10.1561/1500000011

    Article  Google Scholar 

  23. Pidan, D., El-Yaniv, R.: Selective prediction of financial trends with hidden markov models. In: Advances in Neural Information Processing Systems, pp. 855–863 (2011)

    Google Scholar 

  24. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  25. Riloff, E., Wiebe, J.: Learning extraction patterns for subjective expressions. In: Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, pp. 105–112 (2003)

    Google Scholar 

  26. Schumaker, R.P., Chen, H.: A discrete stock price prediction engine based on financial news. Computer 43(1), 51–56 (2010)

    Article  Google Scholar 

  27. Si, J., Mukherjee, A., Liu, B., Li, Q., Li, H., Deng, X.: Exploiting topic based twitter sentiment for stock prediction. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (vol. 2: Short Papers), pp. 24–29 (2013)

    Google Scholar 

  28. Sprenger, T.O., Tumasjan, A., Sandner, P.G., Welpe, I.M.: Tweets and trades: the information content of stock microblogs. European Financial Management (2013). http://onlinelibrary.wiley.com/doi/10.1111/j.1468-036X.2013.12007.x/abstract

  29. Stock, J.H., Watson, M.W.: Vector autoregressions. The Journal of Economic Perspectives 15(4), 101–115 (2001). http://www.jstor.org/stable/2696519

    Article  Google Scholar 

  30. Sun, X.Q., Shen, H.W., Cheng, X.Q.: Trading network predicts stock price. Scientific Reports 4(3711), 1–6 (2014)

    Google Scholar 

  31. Trippi, R.R., Turban, E.: Neural Networks in Finance and Investing: Using Artificial Intelligence to Improve Real World Performance. McGraw-Hill, Inc (1992)

    Google Scholar 

  32. Wilson, T., Hoffmann, P., Somasundaran, S., Kessler, J., Wiebe, J., Choi, Y., Cardie, C., Riloff, E., Patwardhan, S.: Opinionfinder: a system for subjectivity analysis. In: Proceedings of HLT/EMNLP on Interactive Demonstrations, pp. 34–35 (2005)

    Google Scholar 

  33. Wu, D., Ke, Y., Yu, J.X., Yu, P.S., Chen, L.: Detecting leaders from correlated time series. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5981, pp. 352–367. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  34. Yang, B., Guo, C., Jensen, C.S.: Travel cost inference from sparse, spatio temporally correlated time series using markov models. Proc. VLDB Endow. 6(9), 769–780 (2013). http://dx.doi.org/10.14778/2536360.2536375

    Article  Google Scholar 

  35. Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In: Proceedings of the fourth ACM international conference on Web search and data mining, pp. 177–186 (2011)

    Google Scholar 

  36. Zhang, Y.: Prediction of financial time series with Hidden Markov Models. Master’s thesis, Simon Fraser University (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuigeng Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Huang, Y., Zhou, S., Huang, K., Guan, J. (2015). Boosting Financial Trend Prediction with Twitter Mood Based on Selective Hidden Markov Models. In: Renz, M., Shahabi, C., Zhou, X., Cheema, M. (eds) Database Systems for Advanced Applications. DASFAA 2015. Lecture Notes in Computer Science(), vol 9050. Springer, Cham. https://doi.org/10.1007/978-3-319-18123-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18123-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18122-6

  • Online ISBN: 978-3-319-18123-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

  NODES
Association 1
INTERN 8
Note 2
twitter 10