Abstract
We consider the problem of partitioning a finite sequence of points in Euclidean space into a given number of clusters (subsequences) minimizing the sum of squared distances between cluster elements and the corresponding cluster centers. It is assumed that the center of one of the desired clusters is the origin, while the centers of the other clusters are unknown and determined as the mean values over clusters elements. Additionally, there are a few structural restrictions on the elements of clusters with unknown centers: (1) clusters form non-overlapping subsequences of the input sequence, (2) the difference between two consecutive indices is bounded from below and above by prescribed constants, and (3) the total number of elements in these clusters is given as an input. It is shown that the problem is strongly NP-hard. A 2-approximation algorithm which runs in polynomial time for a fixed number of clusters is proposed for this problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Fu, T.: A review on time series data mining. Eng. Appl. Artif. Intell. 24(1), 164–181 (2011)
Kuenzer, C., Dech, S., Wagner, W.: Remote Sensing Time Series. Remote Sensing and Digital Image Processing, vol. 22. Springer, Switzerland (2015)
Warren Liao, T.: Clustering of time series data – a survey. Pattern Recogn. 38(11), 1857–1874 (2005)
Aggarwal, C.C.: Data Mining: The Textbook. Springer, Switzerland (2015)
Kel’manov, A.V., Pyatkin, A.V.: On complexity of some problems of cluster analysis of vector sequences. J. Appl. Ind. Math. 7(3), 363–369 (2013)
Kel’manov, A.V., Khamidullin, S.A.: An approximating polynomial algorithm for a sequence partitioning problem. J. Appl. Ind. Math. 8(2), 236–244 (2014)
Kel’manov, A.V., Mikhailova, L.V.: Joint detection of a given number of reference fragments in a quasi-periodic sequence and its partition into segments containing series of identical fragments. Comput. Math. Math. Phys. 46(1), 165–181 (2006)
Kel’manov, A.V., Khamidullin, S.A., Khandeev, V.I.: An exact pseudopolynomial algorithm for a sequence bi-clustering problem (in Russian). In: Book of Abstract of the XVth Russian Conference “Mathematical Programming and Applications”, pp. 139–140. Inst. Mat. Mekh. UrO RAN, Ekaterinburg (2015)
Kel’manov, A.V., Khamidullin, S.A., Khandeev, V.I.: A fully polynomial-time approximation scheme for a sequence 2-cluster partitioning problem. J. Appl. Indust. Math. 10(2), 209–219 (2016)
Kel’manov, A.V., Romanchenko, S.M.: An FPTAS for a vector subset search problem. J. Appl. Indust. Math. 8(3), 329–336 (2014)
Acknowledgments
This work was supported by Russian Science Foundation, project no. 16-11-10041.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Kel’manov, A., Mikhailova, L., Khamidullin, S., Khandeev, V. (2016). An Approximation Algorithm for a Problem of Partitioning a Sequence into Clusters with Restrictions on Their Cardinalities. In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds) Discrete Optimization and Operations Research. DOOR 2016. Lecture Notes in Computer Science(), vol 9869. Springer, Cham. https://doi.org/10.1007/978-3-319-44914-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-44914-2_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44913-5
Online ISBN: 978-3-319-44914-2
eBook Packages: Computer ScienceComputer Science (R0)