Skip to main content

Image Processing Algorithms with Structure Transferring Properties on the Basis of Gamma-Normal Model

  • Conference paper
  • First Online:
Analysis of Images, Social Networks and Texts (AIST 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 661))

Abstract

Within the framework of the Bayesian approach, the general problem of image processing can be represented as a problem of estimation of the hidden component of the two-component random field on the basis of realization of its observable component, that is an analyzed image. Nonstationary gamma-normal model of the two-component random field showed good results in processing quality and computation time by solving the problem of image denoising. This paper proposes to extend the initial formulation for solving problems requiring transferring structure of the intermediate image on the processing result. Haze removal problem, HDR image compression and edges refinement of an image are considered as practical examples of such problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 47.00
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 59.00
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intel. 35(6), 1397–1409 (2013)

    Article  Google Scholar 

  2. Zhang, J., Cao, Y., Wang, Z.: A new image filtering method: nonlocal image guided averaging. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 2012, pp. 2479–2483 (2014)

    Google Scholar 

  3. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  4. Farbman, Z., et al.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. 27(3), 1145–1155 (2008)

    Article  Google Scholar 

  5. Petschnigg, G., et al.: Digital photography with flash and no-flash image pairs. ACM Trans. Graph. 23(3), 664–673 (2004)

    Article  Google Scholar 

  6. Tappen, M.F.: Utilizing variational optimization to learn Markov random fields. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  7. Geman, D., Reynolds, G.: Constrained restoration and the recovery of discontinuities. IEEE Trans. Pattern Anal. Mach. Intell. 14(3), 367–383 (1992)

    Article  Google Scholar 

  8. Barbu, A.: Training an active random field for real-time image denoising. IEEE Trans. Image Process. 18(11), 2451–2462 (2009)

    Article  MathSciNet  Google Scholar 

  9. Gracheva, I., Kopylov, A., Krasotkina, O.: Fast global image denoising algorithm on the basis of nonstationary gamma-normal statistical model. In: Khachay, M.Y., Konstantinova, N., Panchenko, A., Ignatov, D.I., Labunets, V.G. (eds.) AIST 2015. CCIS, vol. 542, pp. 71–82. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26123-2_7

    Chapter  Google Scholar 

  10. Cheng, Y.J., et al.: Visibility enhancement of single hazy images using hybrid dark channel prior. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3627–3632. IEEE (2013)

    Google Scholar 

  11. Kaiming, H., Jian, S., Tang, X.: Single image haze removal using dark channel prior. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1956–1963 (2009)

    Google Scholar 

  12. Kristofor, B., Gibson, B., Truong, Q.N.: Fast single image fog removal using the adaptive Wiener filter. In: International Conference on Information Processing (ICIP) (2013)

    Google Scholar 

  13. Larin, A., Seredin, O., Kopylov, A., Kuo, S.-Y., Huang, S.-C., Chen, B.-H.: Parametric representation of objects in color space using one-class classifiers. In: Perner, P. (ed.) MLDM 2014. LNCS (LNAI), vol. 8556, pp. 300–314. Springer, Heidelberg (2014). doi:10.1007/978-3-319-08979-9_23

    Google Scholar 

  14. Mottl, V.V., et al.: Hidden tree-like quasi-Markov model and generalized technique for a class of image processing problems. In: Proceedings of the 13th International Conference on Pattern Recognition, 1996, vol. 2, pp. 715–719. IEEE (1996)

    Google Scholar 

  15. He, K., Sun, J.: Fast Guided Filter. arXiv: 1505.00996v1 [cs.CV], 5 May 2015

Download references

Acknowledgements

This research is funded by RFBR grants, 16-07-01039 and 16-57-52042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inessa Gracheva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gracheva, I., Kopylov, A. (2017). Image Processing Algorithms with Structure Transferring Properties on the Basis of Gamma-Normal Model. In: Ignatov, D., et al. Analysis of Images, Social Networks and Texts. AIST 2016. Communications in Computer and Information Science, vol 661. Springer, Cham. https://doi.org/10.1007/978-3-319-52920-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52920-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52919-6

  • Online ISBN: 978-3-319-52920-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

  NODES
INTERN 7