Skip to main content

An Evolutionary Algorithm with a New Coding Scheme for Multi-objective Portfolio Optimization

  • Conference paper
  • First Online:
Simulated Evolution and Learning (SEAL 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10593))

Included in the following conference series:

Abstract

A portfolio optimization problem involves optimal allocation of finite capital to a series of assets to achieve an acceptable trade-off between profit and risk in a given investment period. In the paper, the extended Markowitz’s mean-variance portfolio optimization model is studied. A major challenge with this model is that it contains both discrete and continuous decision variables, which represent the assignment and allocation of assets respectively. To deal with this hard problem, this paper proposes an evolutionary algorithm with a new coding scheme that converts discrete variables into continuous ones. By this way, the mixed variables can be handled, and some of the constraints are naturally satisfied. The new approach is empirically studied and the experiment results indicate its efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 94.00
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 118.00
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 6(2), 154–160 (1994)

    Article  MATH  Google Scholar 

  2. Bienstock, D.: Computational study of a family of mixed-integer quadratic programming problems. Math. Program. 74(2), 121–140 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chang, T.-J., Meade, N., Beasley, J.E., Sharaiha, Y.M.: Heuristics for cardinality constrained portfolio optimisation. Comput. Oper. Res. 27(13), 1271–1302 (2000)

    Article  MATH  Google Scholar 

  4. Coello, C.A.C.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput. Methods Appl. Mech. Eng. 191(11), 1245–1287 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Elton, E.J., Gruber, M.J.: Investments and Portfolio Performance. World Scientific, Singapore (2011)

    Google Scholar 

  6. Grinblatt, M., Titman, S., Wermers, R.: Momentum investment strategies, portfolio performance, and herding: a study of mutual fund behavior. Am. Econ. Rev. 1088–1105 (1995)

    Google Scholar 

  7. Gulpinar, N., An, L.T.H., Moeini, M.: Robust investment strategies with discrete asset choice constraints using DC programming. Optimization 59(1), 45–62 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lwin, K., Rong, Q., Kendall, G.: A learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization. Appl. Soft Comput. 24, 757–772 (2014)

    Article  Google Scholar 

  9. Mansini, R., Speranza, M.G.: Heuristic algorithms for the portfolio selection problem with minimum transaction lots. Eur. J. Oper. Res. 114(2), 219–233 (1999)

    Article  MATH  Google Scholar 

  10. Markowitz, H.: Portfolio selection. J. Finance 7(1), 77–91 (1952)

    Google Scholar 

  11. Newman, A.M., Weiss, M.: A survey of linear and mixed-integer optimization tutorials. INFORMS Trans. Educ. 14(1), 26–38 (2013)

    Article  Google Scholar 

  12. Robič, T., Filipič, B.: DEMO: differential evolution for multiobjective optimization. In: Coello, C.A.C., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 520–533. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31880-4_36

    Chapter  Google Scholar 

  13. Shaw, D.X., Liu, S., Kopman, L.: Lagrangian relaxation procedure for cardinality-constrained portfolio optimization. Optim. Methods Softw. 23(3), 411–420 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sierra, M.R., Coello, C.A.C.: Improving PSO-based multi-objective optimization using crowding, mutation and \(\epsilon \)-dominance. In: Coello, C.A.C., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31880-4_35

    Chapter  Google Scholar 

  15. Skolpadungket, P., Dahal, K., Harnpornchai, N.: Portfolio optimization using multi-objective genetic algorithms. In: 2007 IEEE Congress on Evolutionary Computation, pp. 516–523. IEEE (2007)

    Google Scholar 

  16. Steuer, R.E., Hirschberger, M., Deb, K.: Extracting from the relaxed for large-scale semi-continuous variable nondominated frontiers. J. Glob. Optim. 64(1), 33–48 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Streichert, F., Ulmer, H., Zell, A.: Evolutionary algorithms and the cardinality constrained portfolio optimization problem. In: Ahr, D., Fahrion, R., Oswald, M., Reinelt, G. (eds.) ORP 2003. Operations Research Proceedings, vol. 2003, pp. 253–260. Springer, Heidelberg (2004). doi:10.1007/978-3-642-17022-5_33

    Chapter  Google Scholar 

  19. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the Shanghai Clearing House under the project of ‘artificial intelligence methods for complex 0-1 financial optimization’, the National Natural Science Foundation of China under Grant No. 61673180, and the Science and Technology Commission of Shanghai Municipality under Grant No. 14DZ2260800.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimin Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chen, Y., Zhou, A., Zhou, R., He, P., Zhao, Y., Dong, L. (2017). An Evolutionary Algorithm with a New Coding Scheme for Multi-objective Portfolio Optimization. In: Shi, Y., et al. Simulated Evolution and Learning. SEAL 2017. Lecture Notes in Computer Science(), vol 10593. Springer, Cham. https://doi.org/10.1007/978-3-319-68759-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68759-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68758-2

  • Online ISBN: 978-3-319-68759-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

  NODES
INTERN 1
Note 2
Project 1