Abstract
Over the past several decades, the mouse has gained prominence in the cardiac electrophysiology literature as the animal model of choice. Using computer models of the mouse and human ECG, this paper is a step toward understanding when the mouse succeeds and fails to mimic functional changes resulting from disease states and drug interactions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tamaddon, H.S., Vaidya, D., Simon, A.M., Paul, D.L., Morley, G.E.: High-resolution optical mapping of the right bundel branch in connexin40 knockout mice reveals slow conduction in the the specialized conduction system. Circ. Res. 87, 929–936 (2000)
Brunner, M., Guo, W., Mitchell, G.F., Buckett, P.D., Nerbonne, J.M., Koren, G.: Characterization of mice with combined suppression of I to and I K,slow . Am. J. Physiol Heart Circ. Physiol. 281, H1201–H1209 (2001)
Barry, D.M., Xu, H., Schuessler, R.B., Nerbonne, J.M.: Functional knockout of the transient outward current, Long-QT syndrome, and cardiac remodeling in mice. Circ. Res. 83, 560–567 (1998)
Salama, G., London, B.: Mouse models of long QT syndrome J Physiol. 578, 43–53 (2007)
Drici, M., Arrighi, I., Chouabe, C., Mann, J.R., Lazdunski, M., Romey, G., Barhanin, J.: Involvement of IsK-associated K  +  channel heart rate control of repolarization in a murine engineered model of Jervell and Lange-Nielsen syndrome. Circ. Res. 83, 95–102 (1998)
Morley, G.E., Vaidya, D., Samie, F.H., Lo, C., Delmar, M., Jalife, J.: Characterization of conduction in the ventricles of normal and heterozygous Cx43 knockout mice using optical mapping. J. Cardiovasc Electrophysiol. 10, 1361–1375 (1999)
Doevendans, P.A., Daemen, M.J., de Muinck, E.D., Smits, J.F.: Cardiovascular phenotyping in mice. Cardiovasc Res. 39, 34–49 (1998)
Berul, C.I.: Electrophysiological phenotyping in genetically engineered mice. Physiol Genomics 13, 207–216 (2003)
Knollmann, B.C., Tranquillo, J., Sirenko, S.G., Henriquez, C., Franz, M.R.: Microelectrode study of the genesis of the monophasic action potential by contact electrode technique. J. Cardiovasc Electrophysiol. 12, 1246–1252 (2002)
Vaidya, D., Morley, G.E., Samie, F.H., Jalife, J.: Reentry and fibrillation in the mouse heart: A challenge to the critical mass hypothesis. Circ. Res. 85, 174–181 (1999)
Nerbonne, J.M.: Studying cardiac arrhythmias in the mouse - a reasonable model for probing mechanisms? Trends Cardiovasc Med. 14, 83–93 (2004)
Jiang, Y., Pandya, K., Smithies, O., Hsu, E.W.: Three-dimensional diffusion tensor microscopy of fixed mouse hearts. Magn Reson Med. 53, 1133–1137 (2004)
Punske, B.B., Taccardi, B., Steadman, B., Ershler, P.R., England, A., Valencik, M.L., McDonald, J.A., Litwin, S.E.: Effect of fiber orientation on propagation: electrical mapping of genetically altered mouse hearts. J. Electrocardiol. 38( 40-4), 40–44 (2005)
Nygren, A., Clark, R.B., Belke, D.D., Kondo, C., Giles, W.R., Witkowski, F.X.: Voltage-sensitive dye mapping of activation and conduction in adult mouse hearts. Annals of BME 28, 958–967 (2000)
Anumonwo, J.M.B., Tallini, Y.N., Vetter, F.J., Jalife, J.: Action potential characteristics and arrhythmogenic properties of the cardiac conduction system of the murine heart. Circ. Res. 89, 329–335 (2001)
Sampson, K.J., Henriquez, C.S.: Electrotonic influences on action potential duration dispersion in small hearts: a simulation study. Am. J. Physiol. Heart Circ. Physiol. 289, 350–360 (2005)
Liu, G., Iden, J.B., Kovithavongs, K., Gulamhusein, R., Duff, H.J., Kavanagh, K.M.: In vivo temporal and spatial distribution of depolarization and repolarization and the illusive murine T wave. J. Physiol. 555, 267–279 (2003)
Pandit, S.V., Clark, R.B., Giles, W.R., Demir, S.S.: A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophys. J. 81, 3029–3051 (2001)
ten Tusscher, K.H.W.J., Nobel, D., Nobel, P.J., Panfilov, A.V.: A model for human ventricular tissue. Am. J. Physiol Heart Circ. Physiol. 286, H1573–H1589 (2004)
Harrild, D., Henriquez, C.: A computer model of normal conduction in the human atria. Circ. Res. 87, E25–36 (2000)
Gima, K., Rudy, Y.: Ionic current basis of electrocardiographic waveforms: A model study. Circ. Res. 90, 889–896 (2002)
Danik, S., Cabo, C., Chiello, C., Kang, S., Wit, A.L., Coromilas, J.: Correlation of repolarization of ventricular monophasic action potential with ECG in the murine heart. Am. J. Physiol. 283, H372–H381 (2002)
Agduhr, E., Stenstrom, N.: The appearance of the electrocardiogram in heart lesions produced by cod liver oil treatment. Acta Paediatr 33, 493–588 (1929)
Plonsey, R.: The active fiber in a volume conductor. IEEE Trans. Biomed Eng. 5, 371–381 (1974)
Zhang, Z.S., Tranquillo, J., Neplioueva, V., Bursac, N., Grant, A.O.: Sodium channel kinetic changes that produce Brugada syndrome or progressive cardiac conduction system disease. Am. J. Physiol Heart Circ. Physiol. 292, H399–H407 (2007)
Guo, W., Li, H., London, B., Nerbonne, J.M.: Functional Consequences of elimination of I to,f and I to,s . Circ. Res. 87, 73–79 (2000)
Shaw, R.M., Rudy, Y.: Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. Circ. Res. 81, 727–741 (1997)
Qu, Z., Weiss, J.N., Garfinkel, A.: Cardiac electrical restitution properties and stability of reentry spiral waves: a simulation study. Am. J. Physiol. 276, H269–283 (1999)
Viswanathan, P.C., Rudy, Y.: Pause induced early afterdepolarizations in the long QT syndrome: a simulation study. Cardiovasc Res. 42, 530–542 (1999)
Babij, P., Askew, R., Nieuwenhuijsen, B., Su, C., Bridal, T.R., Jow, B., Argentieri, T.M., Kulik, J., DeGennaro, L.J., Spinelli, W., Colatsky, T.J.: Inhibition of cardiac delayed rectifier K+ current by overexpression of the Long-QT syndrome HERG G628S mutation in transgenic mice. Circ. Res. 83, 668–678 (1998)
Tranquillo, J.V., Hlavacek, J., Henriquez, C.S.: An integrative model of mouse cardiac electrophysiology from cell to torso. Europace 2, 56–70 (2005)
Bondarenko, V.E., Szigeti, G.P., Bett, G.C.L., Kim, S., Rasmusson, R.L.: Computer model of action potential of mouse ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 287, H1378–H1403 (2004)
Iyer, V., Mazhari, R., Winslow, R.: A computational model of the human left-ventricular epicardial myocyte. Biophys. J. 87, 1507–1523 (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Tranquillo, J., Sunkara, A. (2007). Can We Trust the Transgenic Mouse? Insights from Computer Simulations. In: Sachse, F.B., Seemann, G. (eds) Functional Imaging and Modeling of the Heart. FIMH 2007. Lecture Notes in Computer Science, vol 4466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72907-5_22
Download citation
DOI: https://doi.org/10.1007/978-3-540-72907-5_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72906-8
Online ISBN: 978-3-540-72907-5
eBook Packages: Computer ScienceComputer Science (R0)