Skip to main content

A Tutorial on Multi-label Classification Techniques

  • Chapter
Foundations of Computational Intelligence Volume 5

Part of the book series: Studies in Computational Intelligence ((SCI,volume 205))

  • 3345 Accesses

Summary

Most classification problems associate a single class to each example or instance. However, there are many classification tasks where each instance can be associated with one or more classes. This group of problems represents an area known as multi-label classification. One typical example of multi-label classification problems is the classification of documents, where each document can be assigned to more than one class. This tutorial presents the most frequently used techniques to deal with these problems in a pedagogical manner, with examples illustrating the main techniques and proposing a taxonomy of multi-label techniques that highlights the similarities and differences between these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 188.50
Price excludes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 236.00
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
CHF 236.00
Price excludes VAT (Switzerland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aiolli, F., Sperduti, A.: Multiclass Classification with Multi-Prototype Support Vector Machines. Journal of Machine Learning Research 6, 817–850 (2005)

    MathSciNet  Google Scholar 

  2. Barlett, P., Peter, B., Bartlett, J., Schölkopf, B., Schuurmans, D., Smola, A.J.: Advances in Large-Margin Classifiers. The MIT Press, Cambridge (2000)

    Google Scholar 

  3. Barutcuoglu, Z., Schapire, R.E., Troyanskaya, O.G.: Hierarchical multi-label prediction of gene function. Bioinformatics 22, 830–836 (2006)

    Article  Google Scholar 

  4. Boutell, M., Shen, X., Luo, J., Brown, C.: Multi-label semantic scene classification. Technical Report, Department of Computer Science University of Rochester, USA (2003)

    Google Scholar 

  5. Blockeel, H., Bruynooghe, M., Dzeroski, S., Ramon, J., Struyf, J.: Hierarchical multiclassication. In: Proceedings of the ACM SIGKDD 2002 Workshop on Multi-Relational Data Mining (MRDM 2002), Edmonton, Canada, pp. 21–35.

    Google Scholar 

  6. Blockeel, H., Schietgat, L., Struyf, J., Dzeroski, S., Clare, A.: Decision Trees for Hierarchical Multilabel Classification: A Case Study in Functional Genomics. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS, vol. 4213, pp. 18–29. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Brinker, K., Fürnkranz, J., Hüllermeier, E.: A Unified Model for Multila-bel Classification and Ranking. In: ECAI 2006, pp. 489–493 (2006)

    Google Scholar 

  8. Brinker, K., Hüllermeier, E.: Case-Based Multilabel Ranking. In: IJCAI, pp. 702–707 (2007)

    Google Scholar 

  9. Brinker, K., Hüllermeier, E.: Label Ranking in Case-Based Reasoning. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS, vol. 4626, pp. 77–91. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Chan, A., Freitas, A.A.: A new ant colony algorithm for multi-label classi-fication with applications in bioinfomatics. In: Genetic and Evolutionary Computation 2006 Conference (GECCO 2006), Seattle, USA, pp. 27–34 (2006)

    Google Scholar 

  11. Clare, A.J., King, R.D.: Knowledge discovery in multi-label phenotype data. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, p. 42. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. de Comite, F., Gilleron, R., Tommasi, M.: Learning Multi-label Alter-nating Decision Trees from Texts and Data. In: Perner, P., Rosenfeld, A. (eds.) MLDM 2003. LNCS, vol. 2734, pp. 251–274. Springer, Heidelberg (2003)

    Google Scholar 

  13. Elisseeff, A., Weston, J.: Kernel methods for multi-labelled classifica-tion and categorical regression problems. Technical Report. BIOwulf Technologies (2001)

    Google Scholar 

  14. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Neural Information processing Systems. NIPS, vol. 14 (2001)

    Google Scholar 

  15. Freitas, A.A., de Carvalho, A.C.P.L.F.: A Tutorial on Hierarchical Clas-sification with Applications in Bioinformatics. In: Taniar, D. (ed.) Research and Trends in Data Mining Technologies and Applications, pp. 175–208. Idea Group (2007)

    Google Scholar 

  16. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: Vitányi, P.M.B. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995)

    Google Scholar 

  17. Freund, Y., Mason, L.: The alternating decision tree learning algorithm. In: Proceedings of the Sixteenth International Conference on Machine Learning, ICML, pp. 124–133 (1999)

    Google Scholar 

  18. Gao, S., Wu, W., Lee, C.-H., Chua, T.-S.: An MFoM Learning Approach to Robust Multiclass Multi-Label Text Categorization. In: Proceedings of the International Conference on Machine Learning (ICML 2004), Banff, Canada, pp. 329–336 (2004)

    Google Scholar 

  19. Ghamrawi, N., McCallum, A.: Collective Multi-Label Classification. In: Proceedings of the Fourteenth Conference on Information and Knowledge Management (CIKM), pp. 195–200 (2005)

    Google Scholar 

  20. Godbole, S., Sarawagi, S.: Discriminative Methods for Multi-labeled Clas-sification. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS, vol. 3056, pp. 22–30. Springer, Heidelberg (2004)

    Google Scholar 

  21. Gonçalves, T., Quaresma, P.: A preliminary approach to the multi-label classification problem of Portuguese juridical documents. In: Pires, F.M., Abreu, S.P. (eds.) EPIA 2003. LNCS (LNAI), vol. 2902, pp. 435–444. Springer, Heidelberg (2003)

    Google Scholar 

  22. Hua, X., Qi, G.: Online multi-label active annotation: towards large-scale content-based video search. In: Proceeding of the 16th ACM international Conference on Multimedia. MM 2008, Vancouver, British Columbia, Canada, October 26 - 31, pp. 141–150. ACM, New York (2008)

    Chapter  Google Scholar 

  23. Hsu, C.-W., Lin, C.-J.: A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks 13(2), 415–425 (2002)

    Article  Google Scholar 

  24. Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  25. Karalič, A., Pirnat, V.: Significance level based multiple tree classification. Informatica 15(5), 12 Pages (1991)

    Google Scholar 

  26. Lauser, B., Hotho, A.: Automatic multi-label subject indexing in a multi-lingual environment. In: Koch, T., Sølvberg, I.T. (eds.) ECDL 2003. LNCS, vol. 2769, pp. 140–151. Springer, Heidelberg (2003)

    Google Scholar 

  27. Li, T., Zhang, C., Zhu, S.: Empirical Studies on Multi-label Classification. In: Proceedings of the 18th IEEE international Conference on Tools with Artificial intelligence. ICTAI, November 13 - 15, pp. 86–92. IEEE Computer Society, Washington (2006)

    Chapter  Google Scholar 

  28. Luo, X., Zincir-Heywood, A.N.: Evaluation of Two Systems on Multi-class Multi-label Document Classification. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 161–169. Springer, Heidelberg (2005)

    Google Scholar 

  29. McDonald, R., Crammer, K., Pereira, F.: Flexible Text Segmentation with Structured Multilabel Classification. In: Proceedings of the Human Language Technology Conference on Empirical Methods in Natural Language Processing (HLT-EMNLP, 2005), Vancouver, Canada (2005)

    Google Scholar 

  30. McCallum, A.: Multi-label text classification with a mixture model trained by EM. In: AAAI 1999 Workshop on Text Learning (1999)

    Google Scholar 

  31. Micchelli, C.A., Pontil, M.: Kernels for Multi–task Learning. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems. NIPS 2004, vol. 17, pp. 921–928. MIT Press, Cambridge (2005)

    Google Scholar 

  32. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  33. Pavlidis, P., Weston, J., Cai, J., Grundy, W.: Combining microarray expression data and phylogenetic profiles to learn functional categories using support vector machines. In: RECOMB, pp. 242–248 (2001)

    Google Scholar 

  34. Rousu, J., Saunders, C., Szedmak, S., Shawe-Taylor, J.: Learning Hierarchical Multi-Category Text Classification Models. In: 22nd International Conference on Machine Learning (ICML 2005), Bonn, Germany, pp. 745–752 (2005)

    Google Scholar 

  35. Rousu, J., Saunders, C., Szedmak, S., Shawe-Taylor, J.: Kernel-based Learning of Hierarchical Multilabel Classification Models. Journal of Machine Learning Research 7, 1601–1626 (2006)

    MathSciNet  Google Scholar 

  36. Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys 34(1), 1–47 (2002)

    Article  Google Scholar 

  37. Shen, X., Boutell, M., Luo, J., Brown, C.: Multi-label machine learning and its application to semantic scene classification. Storage and Retrieval Methods and Applications for Multimedia. In: Yeung, M.M., Lienhart, R.W., Li, C.-S. (eds.) Proceedings of the SPIE, vol. 5307, pp. 188–199 (2003)

    Google Scholar 

  38. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Machine Learning 37(3), 297–336 (1999)

    Article  MATH  Google Scholar 

  39. Schapire, R.E., Singer, Y.: BoosTexter: A boosting-based system for text categorization. Machine Learning 39(2/3), 135–168 (2000)

    Article  MATH  Google Scholar 

  40. Su, C.-Y., Lo, A., Lin, C.-C., Chang, F., Hsu, W.-L.: A Novel Approach for Prediction of Multi-Labeled Protein Subcellular Localization for Prokaryotic Bacteria. In: Computational Systems Bioinformatics Conference, CSB Workshops, Palo Alto, USA, pp. 79–82 (2005)

    Google Scholar 

  41. Thabtah, F.A., Cowling, P., Peng, Y.: MMAC: A New Multi-Class, Multi-Label Associative Classification Approach. In: Perner, P. (ed.) ICDM 2004. LNCS, vol. 3275, pp. 217–224. Springer, Heidelberg (2004)

    Google Scholar 

  42. Tikk, D., Biró, G.: Experiments with multi-label text classifier on the Reuters collection. In: Proc. of the International Conference on Computational Cybernetics (ICCC 2003), Siófok, Hungary, pp. 33–38 (2003)

    Google Scholar 

  43. Tsoumakas, G., Katakis, I.: Multi-Label Classification: An Overview. International Journal of Data Warehousing and Mining 3(3), 1–13 (2007)

    Google Scholar 

  44. Ueda, N., Saito, K.: Parametric mixture models for multi-topic text. In: Neural Information Processing Systems 15 (NIPS 15), pp. 737–744. MIT Press, Cambridge (2002)

    Google Scholar 

  45. Ueda, N., Saito, K.: Single-shot detection of multi-category text using pa-rametric mixture models. In: ACM SIG Knowledge Discovery and Data Mining (SIGKDD 2002), pp. 626–631 (2002)

    Google Scholar 

  46. Vallim, R.M.M., Goldberg, D.E., Llorà, X., Duque, T.S.P.C.: A New Approach for Multi-label Classification Based on Default Hierarchies and Organizational Learning, IWLCS. In: The 11th International Workshop on Learning Classifier Systems, part of the Genetic and Evolutionary Computation 2008 Conference (GECCO 2008), Atlanta, Georgia, USA (accepted) (2008)

    Google Scholar 

  47. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  48. Xu, Y.-Y., Zhou, X.-Z., Guo, Z.-W.: Weak learning algorithm for multi-label multiclass text categorization. In: International Conference on Machine Learning and Cybernetics, 2002. Proceedings, vol. 2, pp. 890–894 (2002)

    Google Scholar 

  49. Yan, R., Tesic, J., Smith, J.R.: Model-shared subspace boosting for multi-label classification. In: Proceedings of the 13th ACM SIGKDD international Con-ference on Knowledge Discovery and Data Mining. KDD 2007, San Jose, California, USA, August 12-15, pp. 834–843. ACM, New York (2007)

    Chapter  Google Scholar 

  50. Yu, K., Yu, S., Tresp, V.: Multi-label informed latent semantic indexing. In: Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 258–265 (2005)

    Google Scholar 

  51. Zhang, M.-L., Zhou, Z.-H.: A k-nearest neighbor based algorithm for multi-label classification. In: Proceedings of the 1st IEEE International Conference on Granular Computing (GrC 2005), Beijing, China, pp. 718–721 (2005)

    Google Scholar 

  52. Zhou, Z.: Mining Ambiguous Data with Multi-instance Multi-label Representation. In: Alhajj, R., Gao, H., Li, X., Li, J., Zaïane, O.R. (eds.) ADMA 2007. LNCS, vol. 4632, p. 1. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  53. Zhu, B., Poon, C.K.: Efficient Approximation Algorithms for Multi-label Map Labeling. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 143–152. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  54. Zhu, S., Ji, X., Xu, W., Gong, Y.: Multi-labeled Classification Using Maximum Entropy Method. In: Proceedings of Annual ACM Conference on Research and Development in Information Retrieval (SIGIR 2005), pp. 274–281, Salvador, Brazil (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Carvalho, A.C.P.L.F., Freitas, A.A. (2009). A Tutorial on Multi-label Classification Techniques. In: Abraham, A., Hassanien, AE., Snášel, V. (eds) Foundations of Computational Intelligence Volume 5. Studies in Computational Intelligence, vol 205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01536-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01536-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01535-9

  • Online ISBN: 978-3-642-01536-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

  NODES
Idea 1
idea 1
innovation 1
INTERN 12