Abstract
We present the hardware architecture of an arithmetic unit intended for computing basic operations over a Galois field GF(p). The arithmetic unit supports addition, subtraction, multiplication, and multiplicative inverse modulo a prime p. To compute the multiplicative inverse, we use the promising left-shifting algorithm that is based on the extended Euclidean algorithm. We discuss the potential applications of the arithmetic unit, including elliptic curve cryptography.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bernal, A.: Conception et Etude d’une Architecture Numerique de Haute Performance pour le Calcul de la Fonction Exponentielle Modulaire. PhD thesis, Institut National Polytechnique de Grenoble (1999)
Ciet, M., Joye, M., Lauter, K., Montgomery, P.L.: Trading Inversions for Multiplications in Elliptic Curve Cryptography. Designs, Codes and Cryptography 39(2), 189–206 (2006)
Daly, A., Marmane, W., Kerins, T., Popovici, E.: An FPGA Implementation of a GF(p) ALU for Encryption Processors. Microprocessors and Microsystems 28(5-6), 253–260 (2004)
Meurice de Dormale, G., Bulens, P., Quisquater, J.-J.: An Improved Montgomery Modular Inversion _targeted for Efficient Implementation on FPGA. In: International Conference on Field-Programmable Technology, FPT 2004, pp. 441–444 (2004)
Gutub, A.: New Hardware Algorithms and Designs for Montgomery Modular Inverse Computation in Galois Fields GF(p) and GF(2n). PhD Thesis, Department of Electrical & Computer Engineering, Oregon State University (2002)
Hars, L.: Modular Inverse Algorithms without Multiplications. EURASIP Journal on Embedded Systems 32192:2006, 1–13 (2006)
Hitchcock, Y., Dawson, E., Clark, A., Montague, P.: Implementing an Efficient Elliptic Curve Cryptosystem over GF(p) on a Smart Card. In: Proc. of 10th Computational Techniques and Applications Conference, CTAC 2001. ANZIAM J., vol. 44, pp. C354–C377 (2003)
Hlaváč, J.: Hardware Implementation of Algorithms for Computations in Finite Fields. PhD thesis, Czech Technical University in Prague (2010)
Hlaváč, J., Lórencz, R.: Improved Hardware Architecture for Computing the Modular Inverse using AMI. In: International Conference on Computer, Communication and Control Technologies, CCCT 2003 and ISAS 2003, vol. III, pp. 255–260 (2003)
IEEE Computer Society: IEEE Standard Specifications for Public-Key Cryptography. Document No. IEEE 1363-2000 (2000) ISBN: 0-7381-1956-3
Kaliski Jr., B.S.: The Montgomery Inverse and Its Applications. IEEE Trans. on Computers 44(8), 1064–1065 (1995)
Knuth, D.E.: The Art of Computer Programming, 3rd edn. Seminumerical Algorithms, vol. 2. Addison-Wesley (1998)
Lórencz, R.: Method for Generating the Multiplicative Inverse in a Finite Field GF(p). U.S. Patent No. 7574469 (2009)
Lórencz, R.: New Algorithm for Classical Modular Inverse. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 57–70. Springer, Heidelberg (2003)
Montgomery, P.L.: Modular Multiplication Without Trial Division. Mathematics of Computation 44(170), 519–521 (1985)
Morháč, M., Lórencz, R.: Modular System for Solving Linear Equations Exactly, I. Architecture and Numerical Algorithms. Computers and Artificial Intelligence 11(4), 351–361 (1992)
Wolkerstorfer, J.: Dual-Field Arithmetic Unit for GF(p) and GF(2m). In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 500–514. Springer, Heidelberg (2003)
Yan, X.: Modified Modular Inversion Algorithm for VLSI Implementation. In: 7th International Conference on ASIC – ASICON 2007, pp. 90–93 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hlaváč, J., Lórencz, R. (2013). Arithmetic Unit for Computations in GF(p) with the Left-Shifting Multiplicative Inverse Algorithm. In: Kubátová, H., Hochberger, C., Daněk, M., Sick, B. (eds) Architecture of Computing Systems – ARCS 2013. ARCS 2013. Lecture Notes in Computer Science, vol 7767. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36424-2_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-36424-2_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36423-5
Online ISBN: 978-3-642-36424-2
eBook Packages: Computer ScienceComputer Science (R0)