Skip to main content

An Extension of the Infinite Relational Model Incorporating Interaction between Objects

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7819))

Included in the following conference series:

Abstract

The Infinite Relational Model (IRM) introduced by Kemp et al. (Proc. AAAI2006) is one of the well-known probabilistic generative models for the co-clustering of relational data. The IRM describes the relationship among objects based on a stochastic block structure with infinitely many clusters. Although the IRM is flexible enough to learn a hidden structure with an unknown number of clusters, it sometimes fails to detect the structure if there is a large amount of noise or outliers. To overcome this problem, in this paper we propose an extension of the IRM by introducing a subset mechanism that selects a part of the data according to the interaction among objects. We also present posterior probabilities for running collapsed Gibbs sampling to learn the model from the given data. Finally, we ran experiments on synthetic and real-world datasets, and we showed that the proposed model is superior to the IRM in an environment with noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 47.00
Price excludes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 59.00
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Airoldi, E.M., Blei, D.M., Fienberg, S.E., Xing, E.P.: Mixed membership stochastic blockmodels. J. Mach. Learn. Res. 9, 1981–2014 (2008)

    MATH  Google Scholar 

  2. Aldous, D.: Exchangeability and related topics. In: Ecole d’Ete de Probabilities de Saint-Flour XIII, pp. 1–198 (1985)

    Google Scholar 

  3. Dhillon, I.S.: Co-clustering documents and words using bipartite spectral graph partitioning. In: Proc. SIGKDD, pp. 269–274 (2001)

    Google Scholar 

  4. Dhillon, I.S., Mallela, S., Modha, D.S.: Information-theoretic co-clustering. In: Proc. SIGKDD, pp. 89–98 (2003)

    Google Scholar 

  5. Ding, C., Li, T., Peng, W., Park, H.: Orthogonal nonnegative matrix t-factorizations for clustering. In: Proc. SIGKDD, pp. 126–135 (2006)

    Google Scholar 

  6. Ferguson, T.S.: A bayesian analysis of some nonparametric problems. The Annals of Statistics 1(2), 209–230 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fu, W., Song, L., Xing, E.P.: Dynamic mixed membership blockmodel for evolving networks. In: Proc. ICML, pp. 329–336 (2009)

    Google Scholar 

  8. Hoff, P.D.: Subset clustering of binary sequences, with an application to genomic abnormality data. Biometrics 61(4), 1027–1036 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hubert, L., Arabie, P.: Comparing partitions. J. of Classification 2(1), 193–218 (1985)

    Article  Google Scholar 

  10. Ishiguro, K., Ueda, N., Sawada, H.: Subset infinite relational models. J. Mach. Learn. Res. - Proceedings Track 22, 547–555 (2012)

    Google Scholar 

  11. Kemp, C., Tenenbaum, J.B., Griffiths, T.L., Yamada, T., Ueda, N.: Learning systems of concepts with an infinite relational model. In: Proc. AAAI, vol. 1, pp. 381–388 (2006)

    Google Scholar 

  12. Liu, J.S.: The collapsed gibbs sampler in bayesian computations with applications to a gene regulation problem. J. Am. Stat. Assoc. 89(427), 958–966 (1994)

    Article  MATH  Google Scholar 

  13. Mørup, M., Schmidt, M.N., Hansen, L.K.: Infinite multiple membership relational modeling for complex networks. In: Proc. MLSP, pp. 1–6 (2011)

    Google Scholar 

  14. Osherson, D.N., Stern, J., Wilkie, O., Stob, M., Smith, E.E.: Default probability. Cognitive Science 15(2), 251–269 (1991)

    Article  Google Scholar 

  15. Roy, D., Kemp, C., Mansinghka, V., Tenenbaum, J.: Learning annotated hierarchies from relational data. In: Proc. NIPS, pp. 1185–1192 (2006)

    Google Scholar 

  16. Shafiei, M.M., Milios, E.E.: Latent dirichlet co-clustering. In: Proc. ICDM, pp. 542–551 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ohama, I., Iida, H., Kida, T., Arimura, H. (2013). An Extension of the Infinite Relational Model Incorporating Interaction between Objects. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37456-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37456-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37455-5

  • Online ISBN: 978-3-642-37456-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

  NODES
Note 2