Skip to main content

On Second-Order Nonlinearities of Two Classes of Cubic Boolean Functions

  • Conference paper
Quality, Reliability, Security and Robustness in Heterogeneous Networks (QShine 2013)

Abstract

The higher order nonlinearity of a Boolean function is a cryptographic criterion, which plays an important role in the design of secure block ciphers and stream ciphers. In this paper, we obtain lower bounds of second-order nonlinearities of two classes of highly nonlinear cubic Boolean functions of the form \(f(x)=tr_1^n(\lambda x^{2^{2r}+2^{r+1}+1}),\) \(\lambda\in\mathbb{F}_{2^n}\setminus\{0\}\), for nā€‰=ā€‰3r and nā€‰=ā€‰5r by investigating the lower bounds of the first order nonlinearity of their derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 94.00
Price excludes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 118.00
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Canteaut, A., Charpin, P., Kyureghyan, G.M.: A New Class of Monomial Bent Functions. Finite Fields and Appli.Ā 14, 221ā€“241 (2008)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  2. Carlet, C.: Recursive Lower Bounds on the Nonlinearity Profile of Boolean Functions and Their Applications. IEEE Trans. Inform. TheoryĀ 54(3), 1262ā€“1272 (2008)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  3. Carlet, C., Mesnager, S.: Improving the Upper Bounds on the Covering Radii of Binary Reed-Muller Codes. IEEE Trans. Inform. TheoryĀ 53(1), 162ā€“173 (2007)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  4. Courtois, N.T.: Higher Order Correlation Attacks, XL Algorithm and Cryptanalysis of Toyocrypt. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol.Ā 2587, pp. 182ā€“199. Springer, Heidelberg (2003)

    ChapterĀ  Google ScholarĀ 

  5. Fourquet, R., Tavernier, C.: An Improved List Decoding Algorithm for the Second Order Reed-Muller Codes and its Applications. Designs Codes and Crypto.Ā 49, 323ā€“340 (2008)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  6. Gangopadhyay, S., Sarkar, S., Telang, R.: On the Lower Bounds of the Second Order Nonlinearities of Some Boolean Functions. Information SciencesĀ 180, 266ā€“273 (2010)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  7. Gangopadhyay, S., Singh, B.K.: On Second-Order Nonlinearities of Some Type Bent Functions, http://eprint.iacr.org/2010/286.pdf

  8. Gode, R., Gangopadhyay, S.: On Lower Bounds of Second-Order Nonlinearities of Cubic Bent Functions Constructed by Concatenating Gold Functions. Int. J. Comput. Math.Ā 88(15), 3125ā€“3135 (2011)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  9. Golić, J.: Fast Low Order Approximation of Cryptographic Functions. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol.Ā 1070, pp. 268ā€“282. Springer, Heidelberg (1996)

    ChapterĀ  Google ScholarĀ 

  10. Iwata, T., Kurosawa, K.: Probabilistic Higher Order Differential Attack and Higher Order Bent Functions. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol.Ā 1716, pp. 62ā€“74. Springer, Heidelberg (1999)

    ChapterĀ  Google ScholarĀ 

  11. Kolokotronis, N., Limniotis, K.: Maiorana-McFarland Functions with High Second Order Nonlinearity, http://eprint.iacr.org/2011/212.pdf

  12. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. North-Holland, Amsterdam (1977)

    MATHĀ  Google ScholarĀ 

  13. Rothaus, O.S.: On ā€Bentā€ Functions. Journal of Combinatorial Theory, Series AĀ 20, 300ā€“305 (1976)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  14. Sun, G., Wu, C.: The Lower Bounds on the Second-Order Nonlinearity of Three Classes of Boolean Functions with High Nonlinearity. Information SciencesĀ 179(3), 267ā€“278 (2009)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  15. Sun, G., Wu, C.: The Lower Bounds on the Second-Order Nonlinearity of a Class of Boolean Functions with High Nonlinearity. Appli. Alg. in Eng. Commu. and Comp.Ā 22, 37ā€“45 (2011)

    ArticleĀ  MATHĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2013 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Singh, D., Bhaintwal, M. (2013). On Second-Order Nonlinearities of Two Classes of Cubic Boolean Functions. In: Singh, K., Awasthi, A.K. (eds) Quality, Reliability, Security and Robustness in Heterogeneous Networks. QShine 2013. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37949-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37949-9_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37948-2

  • Online ISBN: 978-3-642-37949-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

  NODES
INTERN 1
Note 2