Abstract
The paper deals with the implementation and benchmarking of cryptographic primitives on contemporary smart-cards and smart-phones. The goal of the paper is to analyze the demands of today’s common theoretical cryptographic constructions used in privacy-enhancing schemes and to find out whether they can be practically implemented on off-the-shelf hardware. We evaluate the performance of all major platforms of programmable smart-cards (JavaCards, .NET cards and MultOS cards) and three reference Android devices (a tablet and two smart-phones). The fundamental cryptographic primitives frequently used in advanced cryptographic constructions, such as user-centric attribute-based protocols and anonymous credential systems, are evaluated. In addition, we show how our results can be used for the estimation of the performance of existing and future cryptographic protocols. Therefore, we provide not only benchmarks of all modern programmable smart-card platforms but also a tool for the performance estimation of privacy-enhancing schemes which are based on popular zero-knowledge proof of knowledge protocols.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
It is either impossible or computationally unfeasible.
- 2.
The size of data hashed reflects the requirements of \(PK\) protocols.
References
Eisenbarth, T., et al.: Compact implementation and performance evaluation of block ciphers in attiny devices. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp. 172–187. Springer, Heidelberg (2012)
Balasch, J., Ege, B., Eisenbarth, T., Gérard, B., Gong, Z., Güneysu, T., Heyse, S., Kerckhof, S., Koeune, F., Plos, T., Pöppelmann, T., Regazzoni, F., Standaert, F.X., Assche, G.V., Keer, R.V., van Oldeneel tot Oldenzeel, L., von Maurich, I.: Compact implementation and performance evaluation of hash functions in attiny devices. IACR Cryptology ePrint Archive (2012)
Oracle: Javacard. http://www.oracle.com/technetwork/java/javacard/downloads/index.html (2013)
Gemalto: .net card. http://www.gemalto.com/products/dotnet_card/ (2013)
MultOS: Multos card. http://www.multos.com (2013)
Deloitte: The deloitte open mobile survey 2012. http://www.deloitte.com/assets/Dcom-Norway/Local%20Assets/Documents/Publikasjoner%202012/deloitte_openmobile2012.pdf (2012)
Cramer, R.: Modular design of secure, yet practical cryptographic protocols. Ph.D. thesis, University of Amsterdam (1996)
Camenisch, J., Stadler, M.: Proof systems for general statements about discrete logarithms. Technical report (1997)
Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)
Chaum, D., Van Heyst, E.: Group signatures. In: Proceedings of the 10th Annual International Conference on Theory and Application of Cryptographic Techniques, EUROCRYPT’91, pp. 257–265. Springer, Heidelberg (1991)
Stadler, M.A., Fujisaki, E., Okamoto, T.: A practical and provably secure scheme for publicly verifiable secret sharing and its applications. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 32–46. Springer, Heidelberg (1998)
Camenisch, J.L., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, p. 93. Springer, Heidelberg (2001)
Bichsel, P., Camenisch, J., Groß, T., Shoup, V.: Anonymous credentials on a standard java card. In: Proceedings of the 16th ACM Conference on Computer and Communications Security, CCS ’09, pp. 600–610. ACM, New York (2009)
Mostowski, W., Vullers, P.: Efficient u-prove implementation for anonymous credentials on smart cards. In: Rajarajan, M., Piper, F., Wang, H., Kesidis, G. (eds.) SecureComm 2011. LNICST, vol. 96, pp. 243–260. Springer, Heidelberg (2012)
Hajny, J.: Anonymous authentication for smartcards. Radioengineering 19(2), 363–368 (2010)
Malina, L., Hajny, J.: Accelerated modular arithmetic for low-performance devices. In: 34th International Conference on Telecommunications and Signal Processing, pp. 131–135. IEEE (2011)
Camenisch, J., et al.: Specification of the identity mixer cryptographic library. Technical report. http://domino.research.ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c85256b360066f0d4/eeb54ff3b91c1d648525759b004fbbb1?OpenDocument (2010)
Paquin, C.: U-prove cryptographic specification v1.1. Technical report. http://research.microsoft.com/apps/pubs/default.aspx?id=166969 (2011)
Hajny, J., Malina, L.: Unlinkable attribute-based credentials with practical revocation on smart-cards. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 62–76. Springer, Heidelberg (2013)
FIPS: Data encryption standard. In: Federal Information Processing Standards Publication, FIPS PUB 46, 46–2 (1977)
FIPS: Advanced encryption standard (aes). In: Federal Information Processing Standards Publication, FIPS PUB 197, pp. 1–47 (2001)
Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)
National Institute of Standards and Technology (U.S.) : Digital Signature Standard (DSS) [electronic resource]. U.S. Deptartment of Commerce, National Institute of Standards and Technology, Gaithersburg (2009)
Rivest, R.: The md5 message-digest algorithm. http://www.ietf.org/rfc/rfc1321.txt (1992)
FIPS: Secure hash standard (shs) (2012)
Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4, 161–174 (1991)
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)
Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer, Heidelberg (1998)
Id-one cosmo v7.0: Technical report, French Network and Information Security Agency (Agence Nationale de la Scurit des Systmes dInformation (ANSSI)). http://www.ssi.gouv.fr/IMG/certificat/anssi-cc-cible_2009-36en.pdf (2009)
Atmel: At90sc256144rcft datasheet. http://datasheet.elcodis.com/pdf2/104/7/1040758/at90sc256144rcft.pdf (2007)
NIST: Gemxpresso r4 e36/e72 pk—multiapp id 36k/72k—top im gx4. http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp771.pdf (2009)
Acknowledgment
This research work is funded by projects SIX CZ.1.05/2.1.00/03.007; the Technology Agency of the Czech Republic projects TA02011260 and TA03010818; the Ministry of Industry and Trade of the Czech Republic project FR-TI4/647.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix
Appendix
Simple examples of Proof of Knowledge (\(PK\)) protocols. All operations are in a group \(\mathbb {Z}^*_p\) of order \(q\) where discrete logarithm is hard to compute and \(l_1, l_2\) are security parameters. More information about \(PK\) protocols in [8].
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hajny, J., Malina, L., Martinasek, Z., Tethal, O. (2014). Performance Evaluation of Primitives for Privacy-Enhancing Cryptography on Current Smart-Cards and Smart-Phones. In: Garcia-Alfaro, J., Lioudakis, G., Cuppens-Boulahia, N., Foley, S., Fitzgerald, W. (eds) Data Privacy Management and Autonomous Spontaneous Security. DPM SETOP 2013 2013. Lecture Notes in Computer Science(), vol 8247. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54568-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-54568-9_2
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54567-2
Online ISBN: 978-3-642-54568-9
eBook Packages: Computer ScienceComputer Science (R0)