Skip to main content

Spatial-Temporal Graph Convolutional Network for Insomnia Classification via Brain Functional Connectivity Imaging of rs-fMRI

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Abstract

Chronic Insomnia Disorder (CID) is a prevalent sleep disorder characterized by persistent difficulties in initiating or maintaining sleep, leading to significant impairment in daily functioning and quality of life. Accurate classification of CID patients is crucial for effective treatment and personalized care. However, existing approaches face challenges in capturing the complex spatio-temporal patterns inherent in rs-fMRI data, limiting their classification performance. In this study, we propose a novel approach utilizing the Spatial-Temporal Graph Convolutional Network (ST-GCN) for classification of CID patients. Our method aims to address the limitations of existing approaches by leveraging the graph convolutional framework to model the spatio-temporal dynamics in rs-fMRI data. Specifically, this method first pre-processes the raw rs-fMRI images and divides the brain into several regions of interest using a brain template. Next, it utilizes the ST-GCN network to integrate spatio-temporal features. Finally, the extracted features are utilized into a fully connected network for classification. Comparative experiment results show that the Accuracy and Specificity of the proposed method reach 98.90%, 99.08% respectively, which are better than the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 70.00
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 87.50
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrol, A., Hassanzadeh, R., Plis, S., Calhoun, V.: Deep learning in resting-state fMRI. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 3965–3969. IEEE (2021)

    Google Scholar 

  2. Biswal, B.B., Kylen, J.V., Hyde, J.S.: Simultaneous assessment of flow and bold signals in resting-state functional connectivity maps. NMR Biomed. 10(4–5), 165–170 (1997)

    Article  Google Scholar 

  3. Bullmore, E., Sporns, O.: The economy of brain network organization. Nat. Rev. Neurosci. 13(5), 336–349 (2012)

    Article  Google Scholar 

  4. Carp, J.: The secret lives of experiments: methods reporting in the fMRI literature. Neuroimage 63(1), 289–300 (2012)

    Article  Google Scholar 

  5. Ching, T., et al.: Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15(141), 20170387 (2018)

    Article  Google Scholar 

  6. Filip, A.C., Azevedo, T., Passamonti, L., Toschi, N., Lio, P.: A novel graph attention network architecture for modeling multimodal brain connectivity. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 1071–1074. IEEE (2020)

    Google Scholar 

  7. Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E.: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Nat. Acad. Sci. 102(27), 9673–9678 (2005)

    Article  Google Scholar 

  8. Fu, Z., Du, Y., Calhoun, V.D.: The dynamic functional network connectivity analysis framework. Engineering (Beijing, China) 5(2), 190 (2019)

    Google Scholar 

  9. Gadgil, S., Zhao, Q., Pfefferbaum, A., Sullivan, E.V., Adeli, E., Pohl, K.M.: Spatio-temporal graph convolution for resting-state fMRI analysis. In: Martel, A.L., et al. (eds.) MICCAI 2020, Part VII 23. LNCS, vol. 12267, pp. 528–538. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_52

    Chapter  Google Scholar 

  10. Jaussent, I., Morin, C., Dauvilliers, Y.: Definitions and epidemiology of insomnia. Rev. Prat. 67(8), 847–851 (2017)

    Google Scholar 

  11. Kim, B.H., Ye, J.C.: Understanding graph isomorphism network for rs-fMRI functional connectivity analysis. Frontiers Neuroscience 14, 630 (2020)

    Article  Google Scholar 

  12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  13. Li, H., Fan, Y.: Brain decoding from functional MRI using long short-term memory recurrent neural networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018, Part III 11. LNCS, vol. 11072, pp. 320–328. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_37

    Chapter  Google Scholar 

  14. Powers, D.M.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv preprint arXiv:2010.16061 (2020)

  15. Rakhimberdina, Z., Murata, T.: Linear graph convolutional model for diagnosing brain disorders. In: Cherifi, H., Gaito, S., Mendes, J.F., Moro, E., Rocha, L.M. (eds.) COMPLEX NETWORKS 2019. SCI, vol. 882, pp. 815–826. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36683-4_65

    Chapter  Google Scholar 

  16. Saito, T., Rehmsmeier, M.: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE 10(3), e0118432 (2015)

    Article  Google Scholar 

  17. Spiegelhalder, K., et al.: Increased EEG sigma and beta power during NREM sleep in primary insomnia. Biol. Psychol. 91(3), 329–333 (2012)

    Article  Google Scholar 

  18. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002)

    Article  Google Scholar 

  19. Van Essen, D.C., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Article  Google Scholar 

  20. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  21. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)

  22. Yan, C.G., Wang, X.D., Zuo, X.N., Zang, Y.F.: DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics 14, 339–351 (2016)

    Article  Google Scholar 

  23. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  24. Yao, D., et al.: Triplet graph convolutional network for multi-scale analysis of functional connectivity using functional MRI. In: Zhang, D., Zhou, L., Jie, B., Liu, M. (eds.) GLMI 2019. LNCS, vol. 11849, pp. 70–78. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35817-4_9

    Chapter  Google Scholar 

  25. Yao, D., Sui, J., Yang, E., Yap, P.-T., Shen, D., Liu, M.: Temporal-adaptive graph convolutional network for automated identification of major depressive disorder using resting-state fMRI. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds.) MLMI 2020. LNCS, vol. 12436, pp. 1–10. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59861-7_1

    Chapter  Google Scholar 

  26. Zung, W.W.: A rating instrument for anxiety disorders. Psychosom. J. Consultation Liaison Psychiatry 12, 371–379 (1971)

    Google Scholar 

  27. Zung, W.W.: A self-rating depression scale. Arch. Gen. Psychiatry 12(1), 63–70 (1965)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China under Grant 82001803.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Gong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, W., Luo, W., Gong, L., Ou, J., Peng, B. (2024). Spatial-Temporal Graph Convolutional Network for Insomnia Classification via Brain Functional Connectivity Imaging of rs-fMRI. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14437. Springer, Singapore. https://doi.org/10.1007/978-981-99-8558-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8558-6_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8557-9

  • Online ISBN: 978-981-99-8558-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

  NODES
INTERN 2
Note 2
Project 1