Abstract
We say that an integer isnormalized if it is positive and odd.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bradley, G. H.: Algorithm and bound for the greatest common divisor ofn integers. Commun. ACM.13, 433–436 (1970)
Brent, R. P.: Analysis of the binary Euclidean algorithm. In: Algorithms and Complexity. Traub, J. (ed.) pp. 321–355. New York: Academic Press 1976
Dixon, J. D.: The number of steps in the Euclidean algorithm. J. Number Theory.2, 414–422 (1970)
Fantet de Lagny, T.: Analysis générale ou Méthodes nouvelles pour résoudre les problèmes de tous les genres et de tous les degrés à l'infini. Mémoires de l'Academie Royale des Sciences, Paris (1733)
Graham, R. L.: Knuth, D. E., Patashnik, O.: Concrete mathematics. Toronto: Addison Wesley, Reading 1989
Heilbronn, H. A.: On the average length of a class of finite continued fractions. In: Number theory and analysis. Turán, P. (ed.) pp. 87–96. New York: Plenum Press 1969
Kaltofen, E., Rolletschek, H.: Computing greatest common divisors and factorizations in quadratic number fields. Math. Comput.53, 697–720 (1991)
Knuth, D. E.: Evaluation of Porter's constant. Comp. Maths. Appls.2, 137–139 (1976)
Knuth, D. E.: The art of computer programming. Vol. 2. Seminumerical Algorithms (2nd Ed.). Toronto: Addison Wesley, Reading 1981
Lamé, G.: Note sur la limite du nombre des divisions dans la recherche du plus grand commun diviseur entre deux nombre entries. C.R. Acad. Sci. Paris19, 867–870 (1844)
Ma, K., von zur Gathen, J.: Analysis of Euclidean algorithms for polynomials over finite fields. J. Symb. Comput.9, 429–455 (1990)
Norton, G. H.: A unified design and analysis of some GCD algorithms. Sept. 1986. Submitted to “Applicable Algebra, Error-Correcting Codes, Combinatorics and Computer Algebra”. Beth. Th., Clausen, M., (eds.). Lecture Notes in Computer Science,307. Berlin, Heidelberg, New York: Springer 1987. University of Bristol, Department of Computer Science TR-91-16 (August 1991).
Norton, G. H.: A shift-remainder GCD algorithm. In: Applied algebra, algebraic algorithms and error-correcting codes. Huguet, L., Poli, A. (eds.). Lecture Notes in Computer Science,356, pp. 350–356. Berlin, Heidelberg, New York: Springer 1989
Norton, G. H.: Precise analyses of the right- and left-shift greatest common divisor algorithms for GF( q )[x]. S.I.A.M. J. Comput.18, 608–624 (1989)
Norton, G. H.: On the asymptotic analysis of the Euclidean algorithm. J. Symbolic Comput.10, 53–58 (1990)
Norton, G. H.: The complexity of a gcd algorithm based on normalized division. University of Bristol, Department of Computer Science TR-91-15, August 1991
Page, E. S., Wilson, L. B.: An introduction to computational combinatorics. Cambridge Computer Science Texts, No. 9. Cambridge: University Press (1979)
Porter, J. W.: On a theorem of Heilbronn. Mathematika.22, 20–28 (1975)
Stein, J.: Computational problems associated with the Racah algebra. J. Comp. Phys.1, 9 (1967)
Stevin, S.: Les oeuvres mathématiques de Simon Stevin. Girard, A. (ed.). Leyden 1634
Author information
Authors and Affiliations
Additional information
Dedicated to John William Jackson, 1889–1962
Rights and permissions
About this article
Cite this article
Norton, G.H. Computing GCD's by normalized division. AAECC 2, 275–295 (1992). https://doi.org/10.1007/BF01614149
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01614149