Skip to main content
Log in

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We say that an integer isnormalized if it is positive and odd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Switzerland)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bradley, G. H.: Algorithm and bound for the greatest common divisor ofn integers. Commun. ACM.13, 433–436 (1970)

    Google Scholar 

  2. Brent, R. P.: Analysis of the binary Euclidean algorithm. In: Algorithms and Complexity. Traub, J. (ed.) pp. 321–355. New York: Academic Press 1976

    Google Scholar 

  3. Dixon, J. D.: The number of steps in the Euclidean algorithm. J. Number Theory.2, 414–422 (1970)

    Google Scholar 

  4. Fantet de Lagny, T.: Analysis générale ou Méthodes nouvelles pour résoudre les problèmes de tous les genres et de tous les degrés à l'infini. Mémoires de l'Academie Royale des Sciences, Paris (1733)

    Google Scholar 

  5. Graham, R. L.: Knuth, D. E., Patashnik, O.: Concrete mathematics. Toronto: Addison Wesley, Reading 1989

    Google Scholar 

  6. Heilbronn, H. A.: On the average length of a class of finite continued fractions. In: Number theory and analysis. Turán, P. (ed.) pp. 87–96. New York: Plenum Press 1969

    Google Scholar 

  7. Kaltofen, E., Rolletschek, H.: Computing greatest common divisors and factorizations in quadratic number fields. Math. Comput.53, 697–720 (1991)

    Google Scholar 

  8. Knuth, D. E.: Evaluation of Porter's constant. Comp. Maths. Appls.2, 137–139 (1976)

    Google Scholar 

  9. Knuth, D. E.: The art of computer programming. Vol. 2. Seminumerical Algorithms (2nd Ed.). Toronto: Addison Wesley, Reading 1981

    Google Scholar 

  10. Lamé, G.: Note sur la limite du nombre des divisions dans la recherche du plus grand commun diviseur entre deux nombre entries. C.R. Acad. Sci. Paris19, 867–870 (1844)

    Google Scholar 

  11. Ma, K., von zur Gathen, J.: Analysis of Euclidean algorithms for polynomials over finite fields. J. Symb. Comput.9, 429–455 (1990)

    Google Scholar 

  12. Norton, G. H.: A unified design and analysis of some GCD algorithms. Sept. 1986. Submitted to “Applicable Algebra, Error-Correcting Codes, Combinatorics and Computer Algebra”. Beth. Th., Clausen, M., (eds.). Lecture Notes in Computer Science,307. Berlin, Heidelberg, New York: Springer 1987. University of Bristol, Department of Computer Science TR-91-16 (August 1991).

    Google Scholar 

  13. Norton, G. H.: A shift-remainder GCD algorithm. In: Applied algebra, algebraic algorithms and error-correcting codes. Huguet, L., Poli, A. (eds.). Lecture Notes in Computer Science,356, pp. 350–356. Berlin, Heidelberg, New York: Springer 1989

    Google Scholar 

  14. Norton, G. H.: Precise analyses of the right- and left-shift greatest common divisor algorithms for GF( q )[x]. S.I.A.M. J. Comput.18, 608–624 (1989)

    Google Scholar 

  15. Norton, G. H.: On the asymptotic analysis of the Euclidean algorithm. J. Symbolic Comput.10, 53–58 (1990)

    Google Scholar 

  16. Norton, G. H.: The complexity of a gcd algorithm based on normalized division. University of Bristol, Department of Computer Science TR-91-15, August 1991

  17. Page, E. S., Wilson, L. B.: An introduction to computational combinatorics. Cambridge Computer Science Texts, No. 9. Cambridge: University Press (1979)

    Google Scholar 

  18. Porter, J. W.: On a theorem of Heilbronn. Mathematika.22, 20–28 (1975)

    Google Scholar 

  19. Stein, J.: Computational problems associated with the Racah algebra. J. Comp. Phys.1, 9 (1967)

    Google Scholar 

  20. Stevin, S.: Les oeuvres mathématiques de Simon Stevin. Girard, A. (ed.). Leyden 1634

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to John William Jackson, 1889–1962

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norton, G.H. Computing GCD's by normalized division. AAECC 2, 275–295 (1992). https://doi.org/10.1007/BF01614149

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01614149

Key words

Navigation

  NODES
Idea 4
idea 4
Note 3