Abstract
Variable-weight optical orthogonal code (OOC) was introduced by Yang for multimedia optical CDMA systems with multiple quality of service requirements. It is proved that optimal (v, {3, 4}, 1, (1/2, 1/2))-OOCs exist for some complete congruence classes of v. In this paper, for \({Q \in \{(1/3, 2/3), (2/3, 1/3)\}}\), by using skew starters, it is also proved that optimal (v, {3, 4}, 1, Q)-OOCs exist for some complete congruence classes of v.
Similar content being viewed by others
References
Abel R.J.R., Buratti M.: Some progress on (v, 4, 1) difference families and optical orthogonal codes. J. Combin. Theory 106, 59–75 (2004)
Abel J.R.J., Ge G.: Some difference matrix constructions and an almost completion for the existence of triplewhist tournaments. Eur. J. Combin. 26, 1094–1104 (2005)
Bitan S., Etzion T.: Constructions for optimal constant weight cyclically permutable codes and difference families. IEEE Trans. Inform. Theory 41, 77–87 (1995)
Buratti M.: Cyclic designs with block size 4 and related optimal optical orthogonal codes. Des. Codes Cryptogr. 26, 111–125 (2002)
Buratti M.: Recursive constructions for difference matrices and relative difference families. J. Combin. Des. 6, 165–182 (1998)
Buratti M.: Pairwise balanced designs from finite fields. Discrete Math. 208(209), 103–117 (1999)
Buratti M.: On point-regular linear spaces. J. Stat. Plann. Inference 94, 139–146 (2001)
Buratti M., Gionfriddo L.: Strong difference families over arbitrary graphs. J. Combin. Des. 16, 443–461 (2008)
Buratti M., Pasotti A.: Graph decompositions with the use of difference matrices. Bull. Inst. Combin. Appl. 47, 23–32 (2006)
Buratti M., Wei Y., Wu D., Fan P., Cheng M.: Relative difference families with variable block sizes and their related OOCs. IEEE Trans. Inform. Theory 57, 7489–7497 (2011)
Chang Y., Fuji-Hara R., Miao Y.: Combinatorial constructions of optimal optical orthogonal codes with weight 4. IEEE Trans. Inform. Theory 49, 1283–1292 (2003)
Chang Y., Ji L.: Optimal (4up, 5, 1) optical orthogonal codes. J. Combin. Des. 12, 346–361 (2004)
Chang Y., Miao Y.: Constructions for optimal optical orthogonal codes. Discrete Math. 261, 127–139 (2003)
Chen K., Ge G., Zhu L.: Starters and related codes. J. Stat. Plann. Inference 86, 379–395 (2000)
Chu W., Colbourn C.J.: Recursive constructions for optimal (n, 4, 2)-OOCs. J. Combin. Des. 12, 333–345 (2004)
Chu W., Golomb S.W.: A new recursive construction for optical orthogonal codes. IEEE Trans. Inform. Theory 49, 3072–3076 (2003)
Chung H., Kumar P.V.: Optical orthogonal codes-new bounds and an optimal construction. IEEE Trans. Inform. Theory 36, 866–873 (1990)
Chung F.R.K., Salehi J.A., Wei V.K.: Optical orthogonal codes: design, analysis, and applications. IEEE Trans. Inform. Theory 35, 595–604 (1989)
Dinitz, J.H.: Starters. In: Colbourn, C.J., Dinitz, J.H. (eds.) The CRC Handbook of Combinatorial Designs, 2nd edn. pp. 622–628. FL: Chapman and Hall/CRC, Boca Raton (2006)
Dinitz, J.H.; Stinson, D.R. (eds.): Room squares and related designs. In: Contemporary Design Theory, pp. 137–204. Wiley, New York (1992)
Fuji-Hara R., Miao Y.: Optical orthogonal codes: yheir bounds and new optimal constructions. IEEE Trans. Inform. Theory 46, 2396–2406 (2000)
Fuji-Hara R., Miao Y., Yin J.: Optimal (9v, 4, 1) optical orthogonal codes. SIAM J. Discret. Math. 14, 256–266 (2001)
Ge G.: On (g, 4; 1)-diffference matrices. Discret. Math. 301, 164–174 (2005)
Ge G., Miao Y., Sun X.: Perfect difference families, perfect difference matrices, and related combinatorial structures. J. Combin. Des. 18, 415–449 (2010)
Ge G., Yin J.: Constructions for optimal (v, 4, 1) optical orthogonal codes. IEEE Trans. Inform. Theory 47, 2998–3004 (2001)
Golomb, S.W.: Digital Communication with Space Application. Penisula, Los Altos, CA (1982)
Gu F.R., Wu J.: Construction and performance analysis of variable-weight optical orthogonal codes for asynchronous optical CDMA systems. J. Lightw. Technol. 23, 740–748 (2005)
Jiang J., Wu D., Fan P.: General constructions of optimal variable-weight optical orthogonal codes. IEEE Trans. Inform. Theory 7, 4488–4496 (2011)
Jungnickel D.: On difference families and regular Latin squares. Abh. Math. Sem. Hamburg 50, 219–231 (1980)
Ma S., Chang Y.: A new class of optimal optical orthogonal codes with weight five. IEEE Trans. Inform. Theory 50, 1848–1850 (2004)
Ma S., Chang Y.: Constructions of optimal optical orthogonal codes with weight five. J. Combin. Des. 13, 54–69 (2005)
Massey J.L., Mathys P.: The collision channel without feedback. IEEE Trans. Inform. Theory 31, 192–204 (1985)
Mishima M., Fu H.L., Uruno S.: Optimal conflict-avoiding codes of length n ≡ 0 (mod 16) and weight 3. Des. Codes Cryptogr. 52, 275–291 (2009)
Momihara K.: Necessary and sufficient conditions for tight equi-difference conflict avoiding codes of weight three. Des. Codes Cryptogr. 45, 379–390 (2007)
Momihara K.: On cyclic 2(k − 1)-support (n, k) k-1 difference families. Finite Fields Appl. 15, 415–427 (2009)
Momihara K.: Strong difference families, difference covers, and their applications for relative difference families. Des. Codes Cryptogr. 51, 253–273 (2009)
Momihara K., Buratti M.: Bounds and constructions of optimal (n, 4, 2, 1) optical orthogonal codes. IEEE Trans. Inform. Theory 55, 514–523 (2009)
Momihara K., Müller M., Satoh J., Jimbo M.: Constant weight conflict-avoiding codes. SIAM J. Discret. Math. 21, 959–979 (2007)
Momihara K.: New optimal optical orthogonal codes by restrictions to subgroups. Finite Fields Appl. 17, 166–182 (2011)
Pott, A.: A survey on relative difference sets. In: Groups, Difference Sets, and the Monster, de Gruyter Berlin, New York (1996)
Salehi J.A.: Code division multiple access techniques in optical fiber networks-part I fundamental principles. IEEE Trans. Commun. 37, 824–833 (1989)
Salehi J.A., Brackett C.A.: Code division multiple access techniques in optical fiber networks-Part II systems performance analysis. IEEE Trans. Commun. 37, 834–842 (1989)
Salehi J.A.: Emerging optical code-division multiple-access communications systems. IEEE Netw. 3, 31–39 (1989)
Vecchi, M.P.; Salehi, J.A.: Neuromorphic networks based on sparse optical orthogonal codes. In: Neural Information Processing Systems-Natural and Synthetic, pp. 814–823 (1988)
Wu D., Zhao H., Fan P., Shinohara S.: Optimal variable-weight optical orthogonal codes via difference packings. IEEE Trans. Inform. Theory 56, 4053–4060 (2010)
Yang, G.C.: Variable weight optical orthogonal codes for CDMA networks with multiple performance requirements. In: GLOBECOM ’93. IEEE, vol. 1, pp. 488–492 (1993)
Yang G.C.: Variable-weight optical orthogonal codes for CDMA networks with multiple performance requirements. IEEE Trans. Commun. 44, 47–55 (1996)
Yang G.C., Fuja T.E.: Optical orthogonal codes with unequal auto- and cross-correlation constraints. IEEE Trans. Inform. Theory 41, 96–106 (1995)
Yin J.: Some combinatorial constructions for optical orthogonal codes. Discret. Math. 185, 201–219 (1998)
Zhao H., Wu D., Fan P.: Constructions of optimal variable-weight optical orthogonal codes. J. Combin. Des. 18, 274–291 (2010)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jiang, J., Wu, D. & Lee, M.H. Some Infinite Classes of Optimal (v, {3, 4}, 1, Q)-OOCs with \({Q \in \{(\frac {1}{3}, \frac {2}{3}), (\frac {2}{3}, \frac{1}{3})\}}\) . Graphs and Combinatorics 29, 1795–1811 (2013). https://doi.org/10.1007/s00373-012-1235-2
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00373-012-1235-2