Abstract
Big data and high performance computing in Earth System Models (ESMs) are receiving increased attention in earth science research. When scaling to large-scale multi-core computing, efficient parallelization of an ESM, which demands fast parallel computing for long-term integration or climate simulation, becomes extremely challenging because of time-consuming internal big data communication. In this paper, an optimization algorithm for the massive data communication between the Weather Research and Forecasting model and Coupler version 7 in the Chinese Academy of Sciences-Earth System Model (CAS-ESM) is proposed. The optimization strategy is to transmit data from a small packet into a larger packet. Through experiments on a multi-core cluster, the efficiency of the algorithm is confirmed. Then, the parallel performance of the CAS-ESM is evaluated fully. Results show that the parallel efficiency of the CAS-ESM on 1024 CPU cores reaches nearly 70%, indicating that the CAS-ESM has desirable parallel performance and strong scalability. In addition, a generic performance evaluation method for ESMs from perspectives of optimal load balance and efficiency is proposed. Results show that the computing speed is the fastest and computational efficiency is the highest when the CAS-ESM runs on a certain number of cores.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Wang, L., Geng, H., Liu, P., et al.: Particle swarm optimization based dictionary learning for remote sensing big data. Knowl.-Based Syst. 79, 43–50 (2015)
Wang, L., Lu, K., Liu, P., et al.: IK-SVD: dictionary learning for spatial big data via incremental atom update. Comput. Sci. Eng. 16(4), 41–52 (2014)
Song, W., Liu, P., Wang, L.: Sparse representation-based correlation analysis of non-stationary spatiotemporal big data. Int. J. Digit. Earth 9(9), 892–913 (2016)
Wang, L., Song, W., Liu, P.: Link the remote sensing big data to the image features via wavelet transformation. Clust. Comput. 19(2), 793–810 (2016)
He, Z., Wu, C., Liu, G., Zheng, Z., Tian, Y.: Decomposition tree: a spatio-temporal indexing method for movement big data. Clust. Comput. 18(4), 1481–1492 (2015)
Wang, Y., Liu, Z., Liao, H., Li, C.: Improving the performance of GIS polygon overlay computation with MapReduce for spatial big data processing. Clust. Comput. 18(2), 507–516 (2015)
Deng, Z., Hu, Y., Zhu, M., Huang, X., Du, B.: A scalable and fast OPTICS for clustering trajectory big data. Clust. Comput. 18(2), 549–562 (2015)
Chen, Y., Li, F., Fan, J.: Mining association rules in big data with NGEP. Clust. Comput. 18(2), 577–585 (2015)
Song, W., Deng, Z., Wang, L., Du, B., Liu, P., Lu, K.: G-IK-SVD: parallel IK-SVD on GPUs for sparse representation of spatial big data. J. Supercomput. 73(8), 3433–3450 (2017)
Xue, W., Yang, C., Fu, H., Wang, X., Xu, Y., Liao, J., Gan, L., Lu, Y., Ranjan, R., Wang, L.: Ultra-scalable CPU-MIC acceleration of mesoscale atmospheric modeling on Tianhe-2. IEEE Trans. Comput. 64(8), 2382–2393 (2015)
Wang, L., Ma, Y., Yan, J., Chang, V., Zomaya, A.Y.: pipsCloud: high performance cloud computing for remote sensing big data management and processing. Future Gener. Comput. Syst. 78, 353–368 (2018)
Hurrell, J.W., Holland, M.M., Gent, P.R., et al.: The community earth system model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94(9), 1339–1360 (2013)
Vertenstein, M., Craig, T., Middleton, A., Feddema, D., Fischer, C.: CESM1. 0.4 Users Guide. Technical report, Community Earth System Model, NCAR, USA (2011)
Sun, H., Zhou, G., Zeng, Q.: Assessments of the climate system model (CAS-ESM-C) using IAP AGCM4 as its atmospheric component. Chin. J. Atmos. Sci. 36(2), 215–233 (2012). in Chinese
Dong, X., Su, T., Wang, J., Lin, R.: Decadal variation of the Aleutian low-icelandic low seesaw simulated by a climate system model (CAS-ESM-C). Atmos. Ocean. Sci. Lett. 7(2), 110–114 (2014)
Taylor, K.E., Stouffer, R.J., Meehl, G.A.: An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93(4), 485–498 (2012)
Montoya, M., Griesel, A., Levermann, A., Mignot, J., Hofmann, M., Ganopolski, A., Rahmstorf, S.: The earth system model of intermediate complexity CLIMBER-3\(\alpha \). Part I: description and performance for present-day conditions. Clim. Dyn. 25(2–3), 237–263 (2005)
Duffy, P.B., Govindasamy, B., Iorio, J.P., et al.: High-resolution simulations of global climate, part 1: present climate. Clim. Dyn. 21(5–6), 371–390 (2003)
Khairoutdinov, M.F., Randall, D.A.: A cloud resolving model as a cloud parameterization in the NCAR community climate system model: preliminary results. Geophys. Res. Lett. 28(18), 3617–3620 (2001)
Washington, W.M., Buja, L., Craig, A.: The computational future for climate and earth system models: on the path to petaflop and beyond. Philos. Trans. R. Soc. Lond. A 367(1890), 833–846 (2009)
Wehner, M.F., Reed, K.A., Li, F., et al.: The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. J. Adv. Model. Earth Syst. 6(4), 980–997 (2014)
Nakaegawa, T., Kitoh, A., Ishizaki, Y., Kusunoki, S., Murakami, H.: Caribbean low-level jets and accompanying moisture fluxes in a global warming climate projected with CMIP3 multi-model ensemble and fine-mesh atmospheric general circulation models. Int. J. Climatol. 34(4), 964–977 (2014)
Miyamoto, Y., Kajikawa, Y., Yoshida, R., Yamaura, T., Yashiro, H., Tomita, H.: Deep moist atmospheric convection in a subkilometer global simulation. Geophys. Res. Lett. 40(18), 4922–4926 (2013)
Craig, A.P., Vertenstein, M., Jacob, R.: A new flexible coupler for earth system modeling developed for CCSM4 and CESM1. Int. J. High Perform. Comput. Appl. 26(1), 31–42 (2012)
Dennis, J.M., Edwards, J., Evans, K.J., et al.: CAM-SE: a scalable spectral element dynamical core for the Community Atmosphere Model. Int. J. High Perform. Comput. Appl. 26(1), 74–89 (2012)
Dennis, J.M., Vertenstein, M., Worley, P.H., Mirin, A.A., Craig, A.P., Jacob, R., Mickelson, S.: Computational performance of ultra-high-resolution capability in the Community Earth System Model. Int. J. High Perform. Comput. Appl. 26(1), 5–16 (2012)
Wehner, M.F., Ambrosiano, J.J., Brown, J.C., et al.: Toward a high performance distributed memory climate model. In: High Performance Distributed Computing, 1993. IEEE Proceedings the 2nd International Symposium, pp. 102–113 (1993)
Mechoso, C.R., Drummond, L.A., Farrara, J.D., Spahr, J.A.: The UCLA AGCM in high performance computing environments. In: Proceedings of the 1998 ACM/IEEE Conference on Supercomputing, pp. 1–7. IEEE Computer Society (1998)
Drake, J., Foster, I., Michalakes, J., Toonen, B., Worley, P.: Design and performance of a scalable parallel community climate model. Parallel Comput. 21(10), 1571–1591 (1995)
Mirin, A.A., Sawyer, W.B.: A scalable implementation of a finite-volume dynamical core in the Community Atmosphere Model. Int. J. High Perform. Comput. Appl. 19(3), 203–212 (2005)
Zou, Y., Xue, W., Liu, S.: A case study of large-scale parallel I/O analysis and optimization for numerical weather prediction system. Future Gener. Comput. Syst. 37, 378–389 (2014)
Li, L., Xue, W., Ranjan, R., Jin, Z.: A scalable Helmholtz solver in GRAPES over large-scale multicore cluster. Concurr. Comput. 25(12), 1722–1737 (2013)
Zhang, T., Sun, X., Xue, W., Qiao, N., Huang, H., Shu, J., Zheng, W.: ParSA: high-throughput scientific data analysis framework with distributed file system. Future Gener. Comput. Syst. 51, 111–119 (2015)
Zhang, T., Li, L., Lin, Y., Xue, W., Xie, F., Xu, H., Huang, X.: An automatic and effective parameter optimization method for model tuning. Geosci. Model Dev. 8(11), 3579–3591 (2015)
Wang, Y., Jiang, J., Ye, H., He, J.: A distributed load balancing algorithm for climate big data processing over a multi-core CPU cluster. Concurr. Comput. 28(15), 4144–4160 (2016)
Zhang, H., Zhang, M., Zeng, Q.: Sensitivity of simulated climate to two atmospheric models: interpretation of differences between dry models and moist models. Mon. Weather Rev. 141(5), 1558–1576 (2013)
Wang, Y., Jiang, J., Zhang, H., et al.: A scalable parallel algorithm for atmospheric general circulation models on a multi-core cluster. Future Gener. Comput. Syst. 72, 1–10 (2017)
Skamarock, W.C., Klemp, J.B., Dudhia, J., et al.: A description of the advanced research WRF version 3. NCAR technical note, TN-475+STR (2008)
Johnsen, P., Straka, M., Shapiro, M., Norton, A., Galarneau, T.: Petascale WRF simulation of hurricane sandy: Deployment of NCSA’s cray XE6 blue waters. In: High Performance Computing, Networking, Storage and Analysis (SC’13), pp. 1–7. IEEE (2013)
Xie, S., Zhang, M., Branson, M., et al.: Simulations of midlatitude frontal clouds by single-column and cloud-resolving models during the atmospheric radiation measurement March 2000 cloud intensive operational period. J. Geophys. Res. 110(D15) (2005)
He, J., Zhang, M., Lin, W., Colle, B., Liu, P., Vogelmann, A.M.: The WRF nested within the CESM: simulations of a midlatitude cyclone over the Southern Great Plains. J. Adv. Model. Earth Syst. 5(3), 611–622 (2013)
Acknowledgements
This work is supported by the National Key Research and Development Program of China (No. 2016YFB0200800), National Natural Science Foundation of China (No. 61602477, No. 41401512), China Postdoctoral Science Foundation (No. 2016M601158), Youth Innovation Promotion Association of CAS (No. Y6YR0300QM), and the Fundamental Research Funds for the Central Universities (No. 2652017113).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Wang, Y., Hao, H., Zhang, J. et al. Performance optimization and evaluation for parallel processing of big data in earth system models. Cluster Comput 22 (Suppl 1), 2371–2381 (2019). https://doi.org/10.1007/s10586-017-1477-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-017-1477-0