Abstract
The first aim of this work was to generalize the techniques used in MacWilliams’ and Sloane’s presentation of the Kerdock code and develop a theory of piecewise quadratic Boolean functions. This generalization led us to construct large families of potentially new bent and almost optimal functions from quadratic forms in this piecewise fashion. We show how our motivating example, the Kerdock code, fits into this setting. These constructions were further generalized to non-quadratic bent functions. The resulting constructions design n-variable bent (resp. almost optimal) functions from n-variable bent or almost optimal functions.
Similar content being viewed by others
References
E. F. Assmus and J. D. Key, Designs and their Codes, Cambridge University Press, Cambridge.
E. Berlekamp (1968) Algebraic Coding Theory McGraw-Hill New York
S. Boztas P. V. Kumar (1994) ArticleTitleBinary sequences with Gold-like correlation but large linear span IEEE Trans. Inform. Theory 40 IssueID2 532–537 Occurrence Handle10.1109/18.312181
A. Canteaut C. Carlet P. Charpin C. Fontaine (2001) ArticleTitleOn cryptographic properties of the cosets of R(1,m) IEEE Trans. Inform. Theory 47 IssueID4 1494–1513 Occurrence Handle10.1109/18.923730
A. Canteaut and P. Charpin, Decomposing bent functions. In Proc. 2002 IEEE International Symposium on Information Theory, Lausanne, 2002. And IEEE Transactions on Information Theory Vol. 49 (2003) pp. 2004–2019.
C. Carlet, Partially bent functions, Designs Codes Cryptography, Vol. 3, (1993) pp. 135–145 and proceedings of CRYPTO’ 92, Advances in Cryptology, Lecture Notes in Computer Science 740, Springer Verlag, Berlin (1993) pp. 280–291.
C. Carlet (1994) Two new classes of bent functions, EUROCRYPT’ 93, Advances in Cryptology, Lecture Notes in Computer Science 765 Springer-Verlag Berlin 77–101
C. Carlet (1995) ArticleTitleGeneralized partial spreads IEEE Trans. Inform. Theory 41 IssueID5 1482–1487 Occurrence Handle10.1109/18.412693
C. Carlet (1996) A construction of bent functions. Finite Fields and Applications, London Mathematical Society, Lecture Series 233 Cambridge University Press Cambridge 47–58
C. Carlet, More correlation-immune and resilient functions over Galois fields and Galois rings. Advances in Cryptology, EUROCRYPT’ 97, Lecture Notes in Computer Science 1233, Springer-Verlag, (1997) pp. 422–433.
C. Carlet (1999) ArticleTitleRecent results on binary bent functions International Conference on Combinatorics, Information Theory and Statistics; Journal of Combinatorics, Information and System Sciences 24 IssueID3–4 275–291
C. Carlet, On Kerdock codes, American Mathematical Society (Proceedings of the conference Finite Fields and Applications Fq4) Contemporary Mathematics 225, (1999) pp. 155–163.
C. Carlet (2004) ArticleTitleOn the confusion and diffusion properties of Maiorana-McFarland’s and extended Maiorana–McFarland’s functions Journal of Complexity 20 182–204 Occurrence Handle10.1016/j.jco.2003.08.013
C. Carlet. On the secondary constructions of resilient and bent functions. Proceedings of “Coding, Cryptography and Combinatorics”, Progress in Computer Science and Applied Logic, Vol. 23, Birkhäuser Verlag, Basel, (2004) pp. 3–28.
C. Carlet H. Dobbertin et G. Leander (2004) ArticleTitleNormal extensions of bent functions IEEE Trans. Inform. Theory 50 2880–2885 Occurrence Handle10.1109/TIT.2004.836681 Occurrence HandleMR2097009
C. Carlet and E. Prouff, On plateaued Boolean functions and their constructions, In Proc. of “Fast Software Encryption 2003”, Lecture Notes in Computer Science, Vol. 2887 (2003) pp. 54–73.
P. Delsarte and J. Goethals, Irreducible binary codes of even dimension, In 1970 Proc. Second Chapel Hill Conference on Combinatorial Mathematics and its Applications, Univ. North Carolina, Chapel Hill, NC (1970) pp. 100–113.
J. Detombe S. Tavares (1993) Constructing large cryptographically strong S-boxes, Advances in Cryptology-AUSCRYPT’92 Springer-Verlag Berlin, Heidelberg, New York
J. F. Dillon, Elementary Hadamard Difference sets. Ph. D. Thesis, Univ. of Maryland (1974).
J. F. Dillon, Elementary Hadamard difference sets, In Proc. Sixth S-E Conf. Comb. Graph Theory and Comp., F. Hoffman et al. (Eds), Winnipeg Utilitas Math, (1975) pp. 237–249.
H. Dobbertin, Construction of bent functions and balanced Boolean functions with high nonlinearity. Fast Software Encryption, Second International Workshop, Lecture Notes in Computer Science 1008, (1995) pp. 61–74.
X.-D. Hou. New constructions of bent functions, International Conference on Combinatorics, Information Theory and Statistics; Journal of Combinatorics, Information and System Sciences, Vol. 24, No. 3–4 pp. 275–291.
R. Fitzgerald J. Yucas (2004) ArticleTitlePencils of quadratic forms over finite fields Discrete Mathematics 283 71–79 Occurrence Handle10.1016/j.disc.2004.01.006
R. Gold (1968) ArticleTitleMaximal recursive sequences with 3-valued cross correlation functions IEEE Trans. Inform. Theory 14 154–156 Occurrence Handle10.1109/TIT.1968.1054106
G. Geer Particlevan der M. Vlugt Particlevan der (1996) ArticleTitleQuadratic forms, generalized Hamming weights of codes and curves with many points J. Number Theory 59 20–36 Occurrence Handle10.1006/jnth.1996.0086
T. Helleseth P.V. Kumar (1998) Sequences with low correlation V. Pless C. Huffman (Eds) Handbook of Coding Theory. Elsevier Science Publishers Amsterdam
X. -D. Hou (1999) ArticleTitleNew constructions of bent functions International Conference on Combinatorics, Information Theory and Statistics; Journal of Combinatorics, Information and System Sciences 24 IssueID3–4 275–291
X. -D. Hou P. Langevin (1997) ArticleTitleResults on bent functions J. Combin. Theory, Series A 80 232–246
K. Khoo G. Gong D. Stinson (2002) ArticleTitleNew families of Gold-like sequences IEEE Int. Symp. Inform. Theory 02 12 281
A. Lempel and M. Cohn, Maximal families of bent sequences, IEEE Trans. Infor. Theory, IT-28 No. 6 (1982) pp. 865–868.
R. Lidl H. Niederreiter (1997) Finite fields Cambridge University Press Cambridge
F. MacWilliams N. Sloane (1977) The Theory of Error Correcting Codes North Holland Amsterdam/New York/Oxford
J. D. Olsen, R. A. Scholtz and L. R. Welch, Bent function sequences, IEEE Trans. Inform. Theory, IT-28 No. 6, (1982) pp. 858–864.
O. S. Rothaus (1976) ArticleTitleOn bent functions J. Comb. Theory, Ser A 20 300–305
M. Simon J. Omura R. Scholtz B. Levitt (1985) Spread-Spectrum Communications Computer Science Press Rock Ville, MD
J. Wolfman (1975) ArticleTitleFormes quadratiques et codes a deux poids C. R. Acad. Sci. Paris Ser. A-B 281 533–535
Y. Zheng and X. M. Zhang, Plateaued functions. ICICS’99, Lecture Notes in Computer Science, Vol. 1726. Heidelberg, Ed., Springer-Verlag, (1999) pp. 284–300.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: T. Helleseth
Rights and permissions
About this article
Cite this article
Carlet, C., Yucas, J.L. Piecewise Constructions of Bent and Almost Optimal Boolean Functions. Des Codes Crypt 37, 449–464 (2005). https://doi.org/10.1007/s10623-005-4036-2
Received:
Revised:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10623-005-4036-2