Abstract
Gabidulin codes are the analogues of Reed–Solomon codes in rank metric and play an important role in various applications. In this contribution, a method for efficient decoding of Gabidulin codes up to their error correcting capability is shown. The new decoding algorithm for Gabidulin codes (defined over \({\mathbb{F}_{q^m}}\)) directly provides the evaluation polynomial of the transmitted codeword. This approach can be seen as a Gao-like algorithm and uses an equivalent of the Euclidean Algorithm. In order to achieve low complexity, a fast symbolic product and a fast symbolic division are presented. The complexity of the whole decoding algorithm for Gabidulin codes is \({\mathcal{O} (m^3 \, \log \, m)}\) operations over the ground field \({\mathbb{F}_q}\) .
Similar content being viewed by others
References
Delsarte P.: Bilinear forms over a finite field, with applications to coding theory. J. Comb. Theory Ser. A 25(3), 226–241 (1978)
Gabidulin E.: A fast matrix decoding algorithm for rank-error-correcting codes. In: Cohen, G., Lobstein, A., Zémor, G., Litsyn, S. (eds) Algebraic Coding, Lecture Notes in Computer Science, vol. 573, chap. 16., pp. 126–133. Springer, Berlin (1992)
Gabidulin E.M.: Theory of codes with maximum rank distance. Probl. Peredachi Inf. 21(1), 3–16 (1985)
Gabidulin E.M., Afanasyev V.B.: Kodirovanie v radioelektronike (Coding in Radio Electronics), in Russian (1986).
Gadouleau M., Yan Z.: Complexity of decoding Gabidulin codes. In: Information Sciences and Systems, 2008. CISS 2008., pp. 1081–1085 (2008).
Gao S.: Normal bases over finite fields. PhD thesis, University of Waterloo, Department of Combinatorics and Optimization (1993).
Gao S.: A New Algorithm for Decoding Reed–Solomon Codes. Communications, Information and Network Security, pp. 55–68. Kluwer, Norwell (2002).
Hassan Y., Sidorenko V.: Fast recursive linearized feedback shift register synthesis. In: Twelfth International Workshop on Algebraic and Combinatorial Coding Theory (ACCT 2010), pp. 162–167 (2010).
Kötter R., Kschischang F.R.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54(8), 3579–3591 (2008)
Lidl R., Niederreiter H.: Finite Fields. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1996).
Loidreau P.: A Welch–Berlekamp like algorithm for decoding Gabidulin codes. Coding Cryptogr. pp. 36–45 (2006).
Ore O.: On a special class of polynomials. Trans. Am. Math. Soc. 35, 559–584 (1933)
Ore O.: Theory of non-commutative polynomials. Ann. Math. 34(3), 480–508 (1933)
Paramonov A.V., Tretjakov O.V.: An analogue of Berlekamp–Massey algorithm for decoding codes in Rank Metric. In: Proceedings of MIPT (1991).
Richter G., Plass S.: Error and erasure decoding of rank-codes with a modified Berlekamp–Massey algorithm. In: 5th International ITG Conference on Source and Channel Coding (SCC), Erlangen, pp. 203–211 (2004).
Richter G., Plass S.: Fast decoding of rank-codes with rank errors and column erasures. In: International Symposium on Information Theory 2004, ISIT 2004, p. 398 (2004).
Roth R.M.: Maximum-rank array codes and their application to crisscross error correction. IEEE Trans. Inf. Theory 37(2), 328–336 (1991)
Sidorenko V.R., Richter G., Bossert M.: Linearized shift-register synthesis. IEEE Trans. Inf. Theory 57(9), 6025–6032 (2011)
Silva D., Kschischang F.R.: Fast encoding and decoding of Gabidulin codes. In: IEEE International Symposium on Information Theory 2009 (2009).
Silva D., Kschischang F.R., Koetter R.: A rank-metric approach to error control in random network coding. IEEE Trans. Inf. Theory 54(9), 3951–3967 (2008)
Skachek V., Roth R.M.: Probabilistic algorithm for finding roots of linearized polynomials. Des. Codes Cryptogr. 46(1), 17–23 (2008)
Sugiyama Y., Kasahara M., Hirasawa S., Namekawa T.: A method for solving key equation for decoding Goppa codes. Inf. Control 27(1), 87–99 (1975)
Wachter A., Afanassiev V., Sidorenko V.: Fast decoding of Gabidulin codes. In: The Seventh International Workshop on Coding and Cryptography 2011 (WCC 2011), pp. 433–442 (2011).
Wachter A., Sidorenko V., Bossert M.: A fast linearized Euclidean algorithm for decoding Gabidulin codes. In: Twelfth International Workshop on Algebraic and Combinatorial Coding Theory (ACCT 2010), pp. 298–303 (2010).
Author information
Authors and Affiliations
Corresponding author
Additional information
This contribution was presented in part at the Seventh International Workshop on Coding and Cryptography 2011 (WCC 2011), April 2011, Paris, France [23].
This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography”.
Rights and permissions
About this article
Cite this article
Wachter-Zeh, A., Afanassiev, V. & Sidorenko, V. Fast decoding of Gabidulin codes. Des. Codes Cryptogr. 66, 57–73 (2013). https://doi.org/10.1007/s10623-012-9659-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-012-9659-5
Keywords
- Gabidulin codes
- Rank metric
- Linearized polynomials
- Fast decoding
- Fast symbolic product
- Fast symbolic division