Abstract
In this article we use techniques from coding theory to derive upper bounds for the number of rational places of the function field of an algebraic curve defined over a finite field. The used techniques yield upper bounds if the (generalized) Weierstrass semigroup (J Pure Appl Algebra 207(2), 243–260, 2006) for an n-tuple of places is known, even if the exact defining equation of the curve is not known. As shown in examples, this sometimes enables one to get an upper bound for the number of rational places for families of function fields. Our results extend results in (J Pure Appl Algebra 213(6), 1152–1156, 2009).
Similar content being viewed by others
References
Apéry R.: Sur les branches superlinéaires des courbes algébriques. C. R. Acad. Sci. Paris 222, 1198–1200 (1946)
Beelen P.: The order bound for general algebraic geometric codes. Finite Fields Appl. 13(3), 665–680 (2007)
Beelen P., Tutaş N.: A generalization of the Weierstrass semigroup. J. Pure Appl. Algebra 207(2), 243–260 (2006)
Bras-Amorós M., Vico-Oton A.: On the Geil-Matsumoto bound and the length of AG codes. Des. Codes Cryptogr. (accepted).
Dijkstra E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)
Geil O., Matsumoto R.: Bounding the number of \({\mathbb{F}_q}\)-rational places in algebraic function fields using Weierstrass semigroups. J. Pure Appl. Algebra 213(6), 1152–1156 (2009)
Høholdt T., van Lint J.H., Pellikaan R.: Algebraic geometry of codes. in Handbook of Coding Theory Vol. I, II. (North-Holland, Amsterdam, 1998), pp. 871–961.
Lewittes J.: Places of degree one in function fields over finite fields. J. Pure Appl. Algebra. 69(2), 177–183 (1990)
Rosales J.C., García-Sánchez P.A.: Numerical semigroups, volume 20 of developments in mathematics. Springer, (2009)
Stichtenoth H.: Algebraic Function Fields and Codes. (Universitext, Springer, Berlin, 1993).
van der Geer G., Howe E., Lauter K., Ritzenthaler C.: manYPoints: Table of Curves with Many Points. Online available at http://www.manypoints.org (2011).
Author information
Authors and Affiliations
Corresponding author
Additional information
This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography”.
Rights and permissions
About this article
Cite this article
Beelen, P., Ruano, D. Bounding the number of points on a curve using a generalization of Weierstrass semigroups. Des. Codes Cryptogr. 66, 221–230 (2013). https://doi.org/10.1007/s10623-012-9685-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-012-9685-3