Abstract
Let \(q\) be a power of a prime integer \(p, m=p^em_0\) and \(|q|_{m_{0}}\) the order of \(q\) modulo \(m_0\). By use of finite commutative chain ring theory, an algorithm to construct all distinct 1-generator quasi-cyclic codes with a fixed parity check polynomial over a finite field \(F_q\) of length \(mn\) and index \(n\), under the condition that \(\mathrm {gcd}(|q|_{m_0},n)=1\), are given.
Similar content being viewed by others
References
Bhargava V.K., Séguin G.E., Stein J.M.: Some \((mk, k)\) cyclic codes in quasi-cyclic form. IEEE Trans. Inf. Theory IT 24, 630–632 (1978).
Cao Y.: Structural properties and enumeration of 1-generator generalized quasi-cyclic codes. Des. Codes Cryptogr. 60, 67–79 (2011).
Cui J., Junying P.: Quaternary 1-generator quasi-cyclic codes. Des. Codes Cryptogr. 58, 23–33 (2011).
Dinh H.Q., López-permouth S.R.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inf. Theory 50, 1728–1744 (2004).
Gulliver T.A., Bhargava V.K.: Two new rate 2/P binary quasi-cyclic codes. IEEE Trans. Inf. Theory 40, 1667–1668 (1994).
Hou X.-D., Leung K.H., Ma S.L.: On the groups of units of finite commutative chain rings. Finite Fields Appl. 9, 20–38 (2003).
Lally K.: Quasicyclic codes of index \(l\) over \(F_{q}\) viewed as \(F_{q}[x]\)-submodules of \(F_{q^{l}}[x]/\langle x^{m}-1 \rangle \). AAECC-15, Lecturer Notes in Computer Science, Vol. 2643 (pp. 244–253). Berlin: Springer (2003).
Ling S., Solé P.: On the algebraic structure of quasi-cyclic codes I: finite fields. IEEE Trans. Inf. Theory 47, 2751–2760 (2001).
Ling S., Solé P.: On the algebraic structure of quasi-cyclic codes II: chain rings. Des. Codes Cryptogr. 30, 113–130 (2003).
Ling S., Niederreiter H., Solé P.: On the algebraic structure of quasi-cyclic codes IV: repeated roots. Des. Codes Cryptogr. 38, 337–361 (2006).
Norton G., Sălăgean A.: On the structure of linear and cyclic codes over finite chain rings. Appl. Algebra Eng. Commun. Comput. 10, 489–506 (2000).
Séguin G.E.: A class of 1-generator quasi-cyclic codes. IEEE Trans. Inf. Theory 50, 1745–1753 (2004).
Tavares S.E., Bhargava V.K., Shiva S.G.S.: Some rate P/P+1 quasi-cyclic codes. IEEE Trans. Inf. Theory IT 20, 133–135 (1974).
Acknowledgments
This research is supported in part by the National Natural Science Foundation of China (No. 10971160).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by J. Bierbrauer.
Rights and permissions
About this article
Cite this article
Cao, Y. A class of 1-generator repeated root quasi-cyclic codes. Des. Codes Cryptogr. 72, 483–496 (2014). https://doi.org/10.1007/s10623-012-9777-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-012-9777-0
Keywords
- 1-Generator repeated root quasi-cyclic code
- Finite commutative chain ring
- Parity check polynomial
- Group of units