Abstract
Let \(D\) be the support design of the minimum weight of an extremal binary doubly even self-dual \([24m,12m,4m+4]\) code. In this note, we consider the case when \(D\) becomes a \(t\)-design with \(t \ge 6\).
Similar content being viewed by others
References
Assmus Jr. E.F., Mattson Jr. H.F.: New 5-designs. J. Comb. Theory 6, 122–151 (1969).
Bannai E., Koike M., Shinohara M., Tagami M.: Spherical designs attached to extremal lattices and the modulo p property of Fourier coefficients of extremal modular forms. Mosc. Math. J. 6, 225–264 (2006).
Bosma W., Cannon J., Playoust C.: The Magma algebra system I: the user language. J. Symb. Comp. 24(3/4), 235–265 (1997).
Calderbank A.R., Delsarte P., Sloane N.J.A.: A strengthening of the Assmus–Mattson theorem. IEEE Trans. Inf. Theory 37, 1261–1268 (1991).
Cameron P.J., van Lint J.H.: Designs, Graphs, Codes and Their Links, London Mathematical Society Student Texts 22. Cambridge University Press, Cambridge (1991).
Koch H.: On self-dual doubly-even extremal codes. Discret. Math. 83(2–3), 291–300 (1990).
Tonchev V.D.: A characterization of designs related to the Witt system \(S(5,8,24)\). Math. Z. 191, 225–230 (1986).
Tonchev V. D.: Combinatorial configurations designs, codes, graphs (Translated from the Bulgarian). In: Melter R. A. (ed.) Pitman Monographs and Surveys in Pure and Applied Mathematics, 40. Longman Scientific & Technical, Harlow, Wiley, New York, (1988).
Weisstein E. W.: Stirling Number of the Second Kind’. From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html+ (2008).
Zhang S.: On the nonexistence of extremal self-dual codes. Discret. Appl. Math. 91, 277–286 (1999).
Acknowledgments
This work was supported by JSPS KAKENHI Grant Number 22840003, 24740031.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by V. D. Tonchev.
Rights and permissions
About this article
Cite this article
Horiguchi, N., Miezaki, T. & Nakasora, H. On the support designs of extremal binary doubly even self-dual codes. Des. Codes Cryptogr. 72, 529–537 (2014). https://doi.org/10.1007/s10623-012-9782-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-012-9782-3