Abstract
The paper proposes a type of secret sharing schemes called ramp assignment schemes (RAS’s) to realize general access structures (AS’s). In such a scheme, each participant is assigned a subset of primitive shares of an optimal \((k,L,m)\)-ramp scheme in such a way that the number of primitive shares assigned to each qualified subset is not less than \(k\) whereas the one corresponding to any forbidden subset is not greater than \(k-L\). RAS’s can be viewed as a generalization of multiple assignment schemes (MAS’s). For a same AS, the minimum information rate achieved by MAS’s can not be less than that achieved by RAS’s. With our method, one can find efficient suitable decompositions for general AS’s. And it provides a possibility to refine an existing \((\lambda ,\omega )\)-decomposition. We show that a RAS with minimal worst or/and average information rate can be obtained by linear programming (LP), which is in the complexity class P and much easier than the NP-hard integer programming (IP) applied to constructing optimal MAS’s. Several well-designed algorithms are further presented to cut down the size of the LP/IP problems for optimal RAS’s/MAS’s. Other contributions of the paper include: (1) the current best upper bounds of information rates of two graph AS’s on six participants are improved; (2) some specific AS’s are recognized so that one can obtain the corresponding optimal RAS’s directly, i.e., even without the need of solving LP problems; and (3) we characterize the AS’s of ideal RAS’s and of ideal MAS’s.
Similar content being viewed by others
Notes
For the convenience of linear processing, we inverse the original ratios throughout this paper. And as a result, a SSS with a smaller (worst/average) information rate is more efficient than that with a larger one.
We should notice that, when we say a RAS is optimal for \(\mathcal{A }\), it means that it is the most efficient scheme among all RAS’s (instead of all SSS’s) realizing \(\mathcal{A }\). Similarly, an optimal MAS for \(\mathcal{A }\) is the most efficient scheme among all MAS’s (instead of all RAS’s) realizing \(\mathcal{A }\).
References
Shamir A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979).
Blakley G.R.: Safeguarding cryptographic keys. In: AFIPS 1979. National Computer Conference, New York, vol. 48, pp. 137–313 (1979).
Brickell E.F., Stinson D.R.: Some improved bounds on the information rate of perfect secret sharing schemes. J. Cryptol. 5(3), 153–166 (1992).
Blundo C.: Secret sharing schemes for access structures based on graphs (in Italian). Tesi di Laurea (1991).
Martin K.M.: Discrete structures in the theory of secret sharing. Ph.D. thesis, Royal Holloway and Bedford New College, University of London, London (1991).
Martin K.M.: New secret sharing schemes from old. J. Comb. Math. Comb. Comput. 14, 65–77 (1993).
Karnin E.D., Greene J.W., Hellman M.E.: On secret sharing systems. IEEE Trans. Inf. Theory 29, 35–41 (1983).
Capocelli R.M., Santis A.D., Gargano L., Vaccaro U.: On the size of shares for secret sharing schemes. J. Cryptol. 6(3), 157–167 (1993).
Csirmaz L.: The size of a share must be large. J. Cryptol. 10, 223–231 (1997).
Brickell E.F.: Some ideal secret sharing schemes. In: EUROCRYPT ’89, Houthalen, vol. 434, pp. 468–475 (1990).
Blakley G.R., Meadows C.: Security of ramp schemes. In: CRYPTO’84, Santa Barbara, vol. 196, pp. 242–268 (1985).
Yamamoto Y.: On secret sharing systems using \((k, L, n)\)-threshold scheme (in Japanese). Trans. IEICE J68-A(9), 945–952 (1985).
Ito M., Saito A., Nishizeki T.: Secret sharing scheme realizing any access structure. In: IEEE Globecom 1987, Tokyo, pp. 99–102 (1987).
Benaloh J., Leichter J.: Generalized secret sharing and monotone functions. In: CRYPTO’88, Santa Barbara, No. 403, pp. 25–35 (1988).
Stinson D.R.: An explication of secret sharing schemes. Des. Codes Cryptogr. 2, 357–390 (1992).
Stinson D.R.: New general lower bounds on the information rate of secret sharing schemes. In: CRYPTO’92, Santa Barbara, No. 740, pp. 168–182 (1993).
Stinson D.R.: Decomposition constructions for secret-sharing schemes. IEEE Trans. Inf. Theory 40, 118–125 (1994).
Blundo C., Santis A.D., Stinson D.R., Vaccaro U.: Graph decompositions and secret sharing schemes. J. Cryptol. 8, 39–64 (1995).
Blundo C., Santis A.D., Gaggia A.G., Vaccaro U.: New bounds on the information rate of secret sharing schemes. IEEE Trans. Inf. Theory 41(2), 549–554 (1995).
Dijk M.V.: On the information rate of perfect secret sharing schemes. Des. Codes Cryptogr. 6, 143–169 (1995).
Jackson W.A., Martin K.M.: Perfect secret sharing schemes on five participants. Des. Codes Cryptogr. 9, 267–286 (1996).
Dijk M.V., Jackson W.A., Martin K.M.: A general decomposition construction for incomplete secret sharing schemes. Des. Codes Cryptogr. 15, 301–321 (1998).
Li Q., Yan H., Chen K.F.: A new method of using \((k, n)\)-threshold scheme to realize any access structure (in Chinese). J. Shanghai Jiaotong Univ. 38(1), 103–106 (2004).
Iwamoto M., Yamamoto H., Ogawa H.: Optimal multiple assignments based on integer programming in secret sharing schemes. In: ISIT 2004, Chicago, pp. 16–16 (2004).
Dijk M.V., Kevenaar T., Schrijen G., Tuyls P.: Improved constructions of secret sharing schemes by applying \((\lambda ,\omega )\)-decompositions. Inf. Process. Lett. 99(4), 154–157 (2006).
Iwamoto M., Yamamoto H., Ogawa H.: Optimal multiple assignments based on integer programming in secret sharing schemes with general access structure. Trans. IEICE E90-A(1), 101–112 (2007).
Chvátal V.: Linearing Programming. W.H. Freeman, New York (1983).
Karmarkar N.: A new polynomial-time algorithm for linear programming. Combinatorica 4(4), 373–395 (1984).
Garey M.R., Johnson D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1990).
Brickell E.F., Davenport D.M.: On the classification of ideal secret sharing schemes. J. Cryptol. 4(73), 123–134 (1991).
Blundo C., De Santis A., Vaccaro U.: Efficient sharing of many secrets. In: STACS’93, Würzburg, vol. 665, pp. 692–703 (1993).
Kurosawa K., Okada K., Sakano K., Ogata W., Tsujii T.: Nonperfect secret sharing schemes and matroids. In: EUROCRYPT’93, Lofthus, pp. 126–141 (1993).
Simmons G.J., Jackson W.A., Martin K.M.: The geometry of shared secret schemes. Bull. Inst. Comb. Appl. 1, 71–88 (1991).
Li Q., Li X.X., Zheng D., Chen K.F.: Optimal multiple assignments with \((m, m)\)-schemes for general access structures. Cryptology ePrint Archive, Report 2012/007, http://eprint.iacr.org/2012/007.pdf.
Cormen T.H., Leiserson C.E., Rivest R.L., Stein C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009).
Ye Y.: Interior Point Algorithms, Theory and Analysis. Wiley, New York (1997).
Jackson W.A., Martin K.M.: A combinatorial interpretation of ramp schemes. Australas. J. Comb. 14, 51–60 (1996).
Beimel A., Chor B.: Universally ideal secret sharing schemes. IEEE Trans. Inf. Theory 40(3), 786–794 (1994).
Beimel A., Tassa T., Weinreb E.: Characterizing ideal weighted threshold secret sharing. In: TCC’05, Cambridge, vol. 3378, pp. 600–619 (2005).
Beimel A., Livne N., Padró C.: Matroids can be far from ideal secret sharing. In: TCC’08, New York, vol. 4948, pp. 194–212 (2008).
Acknowledgments
The authors appreciate the supports from the National Natural Science Foundation of China under Grant Nos. 61272037, 61070249, 60970111, 61133014 and 60803146.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by D. Jungnickel.
Appendices
Appendices
1.1 Appendix 1: Proof of Lemma 2
Proof
If \(T\subseteq P-P(S), |\mathcal P (T)|=k-L\), then \(T\in \mathcal{F }, S\cup T\in \mathcal{Q }\), from (4) and (5),
Suppose \(\sum \nolimits _{p\in S}\rho _{\varPi }(p)=1\), then (12) says that \(w(j,S)\ge 1,w(j,T)\ge 1\Rightarrow y_{j}=0, w(j,S)\ge 2\Rightarrow y_{j}=0\) and \(\sum \nolimits _{w(j,T)\ge 1,j\in J}y_{j}=\kappa -1\). If \(k>L\) then \(T\ne \emptyset \). Since \(T\) is an arbitrary choice, we have \(w(j,S)\ge 1,w(j,P-P(S))\ge 1\Rightarrow y_{j}=0\), and it holds from (3) that \((\bigcup \nolimits _{p\in S}\psi (p))\cap (\bigcup \nolimits _{p\in P-P(S)}\psi (p))=\emptyset \). Moreover, since \(w(j,S)\ge 2\Rightarrow y_{j}=0\), we have \(\psi (p_S)\cap (\bigcup \nolimits _{p\in S-\{p_S\}}\psi (p))=\emptyset \). And thus \(\psi (p_{S})\cap (\bigcup \nolimits _{p\in (P-P(S))\cup (S-\{p_{S}\})}\psi (p))=\emptyset \). Now suppose \(q_{S}\in P-P(S)\), then there exists \(T\subseteq P-P(S), |\mathcal P (T)|=k-L\) such that \(q_{S}\in T, q_{S}\notin P(T-\{q_{S}\})\), thus \(\{p_{S}\}\cup (T-\{q_{S}\})\in \mathcal{F }\), now from (4), (5) and what we have proved,
which implies that \(\rho _{\varPi }(q_{S})\ge \rho _{\varPi }(p_{S})\). \(\square \)
1.2 Appendix 2: An example of pathological scheme
Let \(\varPi '\) be a RAS corresponding to (13)
then we have the following:
thus from Lemma 1, \(\varPi '\) is a RAS realizing \(\mathrm{AS}(k,L,n_{1},\ldots ,n_{r})\) with \(\bar{\rho }_{\varPi '} < 1/L\).
1.3 Appendix 3: Proof of Lemma 3
Proof
Suppose \(Q\in \mathcal{Q }^{-}\) and \(\{p_{i_{1}},p_{i_{2}}\}\subseteq Q\). As \(\varPi \) is perfect, \(Q-\{p_{i_{1}}\}\) must be a forbidden subset, thus \(|\bigcup \nolimits _{p\in Q-\{p_{i_{1}}\}}\psi (p)|\le k-L, |\bigcup \nolimits _{p\in Q}\psi (p)|=|\bigcup \nolimits _{p\in Q-\{p_{i_{1}}\}}\psi (p)|+|\psi (p_{i_{1}})|-|\psi (p_{i_{1}})\cap (\bigcup \nolimits _{p\in Q-\{p_{i_{1}}\}}\psi (p))|\ge k\), which implies that \(|\psi (p_{i_{1}})|\ge L+(|\bigcup \nolimits _{p\in Q}\psi (p)|-k)+|\psi (p_{i_{1}})\cap (\bigcup \nolimits _{p\in Q-\{p_{i_{1}}\}}\psi (p))|\). On the other hand, \(|\psi (p_{i_{1}})|\le L\) holds as \(\varPi \) is ideal. Then we have \(|\psi (p_{i_{1}})|=L, |\bigcup \nolimits _{p\in Q}\psi (p)|=k\) and \(\psi (p_{i_{1}})\cap \psi (p_{i_{2}})=\emptyset \).
Now consider the case \(\forall Q\in \mathcal{Q }^{-}, \{p_{i_{1}},p_{i_{2}}\}\nsubseteq Q\). Let \(Q\in \mathcal{Q }^{-}\) be a qualified subset containing \(p_{i_{2}}\) and \(p_{i_{3}}\in Q-\{p_{i_{2}}\}\). Set \(M=|\bigcup \nolimits _{p\in \{p_{i_{1}}\}\cup (Q-\{p_{i_{3}}\})}\psi (p)|\), then \(k-L\le M\le k\), and \(M\in \{k-L,k\}\) as \(\varPi \) is perfect. If \(M=k\), then \(\{p_{i_{1}}\}\cup (Q-\{p_{i_{3}}\})\in \mathcal{Q }^{-}\) which contradicts that \(\{p_{i_{1}},p_{i_{2}}\}\subseteq \{p_{i_{1}}\}\cup (Q-\{p_{i_{3}}\})\). Thus \(M=k-L\). And \(M\ge k-L+|\psi (p_{i_{1}})\cap \psi (p_{i_{3}})|\) implies that \(\psi (p_{i_{1}})\cap \psi (p_{i_{3}})=\emptyset \). As \(p_{i_{3}}\) is an arbitrary choice in \(Q-\{p_{i_{2}}\}\), we have \(\psi (p_{i_{1}})\cap (\bigcup \nolimits _{p\in Q-\{p_{i_{3}}\}}\psi (p))=\psi (p_{i_{1}})\cap \psi (p_{i_2})\), i.e., \(\psi (p_{i_{1}})-(\bigcup \nolimits _{p\in Q-\{p_{i_{3}}\}}\psi (p))=\psi (p_{i_{1}})-\psi (p_{i_{2}})\). Now \(M=k-L+|\psi (p_{i_{1}})-(\bigcup \nolimits _{p\in Q-\{p_{i_{3}}\}}\psi (p))|=k-L\) implies that \(\psi (p_{i_{1}})-\psi (p_{i_{2}})=\emptyset \), i.e., \(\psi (p_{i_{1}})\subseteq \psi (p_{i_{2}})\). As \(|\psi (p_{i_{1}})|=L=|\psi (p_{i_{2}})|\), we have \(\psi (p_{i_{1}})=\psi (p_{i_{2}})\). \(\square \)
Rights and permissions
About this article
Cite this article
Li, Q., Li, X.X., Lai, X.J. et al. Optimal assignment schemes for general access structures based on linear programming. Des. Codes Cryptogr. 74, 623–644 (2015). https://doi.org/10.1007/s10623-013-9879-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-013-9879-3
Keywords
- Secret sharing (94A62)
- Ramp assignment scheme
- Multiple assignment scheme
- Information rate
- Linear/integer programming