Abstract
Linear complexity is an important cryptographic index of sequences. We study the linear complexity of \(p(q-1)\)-periodic Legendre–Sidelnikov sequences, which combine the concepts of Legendre sequences and Sidelnikov sequences. We get lower and upper bounds on the linear complexity in different cases, and experiments show that the upper bounds can be attained. Remarkably, we associate the linear complexity of Legendre–Sidelnikov sequences with some famous primes including safe prime and Fermat prime. If \(2\) is a primitive root modulo \(\frac{q-1}{2}\), and \(q\) is a safe prime greater than 7, the linear complexity is the period if \(p\equiv 3 \pmod 8\); \(p(q-1)-p+1\) if \(p\equiv q \equiv 7 \pmod 8\), and \(p(q-1)-\frac{p-1}{2}\) if \(p \equiv 7 \pmod 8, q \equiv 3 \pmod 8\). If \(q\) is a Fermat prime, the linear complexity is the period if \(p \equiv 3 \pmod 8\), and \(p(q-1)-q+2\) if \(p \equiv 5 \pmod 8\). It is very interesting that the Legendre–Sidelnikov sequence has maximal linear complexity and is balanced if we choose \(p=q\) to be some safe prime.
Similar content being viewed by others
References
Brandstatter N., Pirsic G., Winterhof A.: Correlation of the two-prime Sidel’nikov sequence. Des. Codes Cryptogr. 59, 59–68 (2011).
Cusick T.W., Ding C., Renvall A.: Stream Ciphers and Number Theory. North-Holland, Amsterdam (1998).
Ding C.: Linear complexity of generalized cyclotomic binary sequences of order 2. Finite Fields Appl. 3, 159–174 (1997).
Ding C.: Autocorrelation values of generalized cyclotomic sequences of order two. IEEE Trans. Inf. Theory 44(4), 1699–1702 (1998).
Ding C., Helleseth T., Shan W.: On the linear complexity of Legendre sequences. IEEE Trans. Inf. Theory 44(3), 1276–1278 (1998).
Granville A.: Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers. Organic mathematics (Burnaby BC, 1995). CMS Conference Proceedings, vol. 20, pp. 253–276. American Mathematical Society, Providence (1997).
Hasse H.: Theorie der höheren Differentiale in einem algebraischen Funktionenkörper mit vollkommenem Konstantenkörper bei beliebiger Charakteristik. J. Reine Angew. Math. 175, 50–54 (1936).
Helleseth T., Yang K.: On binary sequences with period \(n = p^m-1\) with optimal autocorrelation. In: Helleseth T., Kumar P., Yang K. (eds.) SETA 2001. Lecture Notes in Computer Science, pp. 209–217. Springer, Berlin (2002).
Jungnickel D.: Finite Fields. BI-Wissenschaftsverlag, Mannheim (1993).
Kyureghyan G.M., Pott A.: On the linear complexity of the Sidelnikov–Lempel–Cohn–Eastman sequences. Des. Codes Cryptogr. 29, 149–164 (2003).
Lidl R., Niederreiter H.: Finite Fields. Addison-Wesley, Reading (1983).
Lucas M.E.: Sur les congruences des nombres euleriennes et des coefficients differentiels des fuctions trigonometriques, suivant un-module premier. Bull. Soc. Math. France 6, 122–127 (1878).
Meidl W., Winterhof A.: Some notes on the linear complexity of Sidel’nikov–Lempel–Cohn–Eastman sequences. Des. Codes Cryptogr. 38(2), 159–178 (2006).
Sidel’nikov V.M.: Some \(k\)-valued pseudo-random sequences and nearly equidistant codes. Probl. Inf. Transm. 5(1), 12–16 (1969).
Storer T.: Cyclotomy and Difference Sets. Markham Publishing, Chicago (1967).
Su M.: On the \(d\)-ary generalized Legendre-Sidelnikov sequence. In: Helleseth T., Jedwab J. (eds.) Proceedings of Sequences and their Applications 2012, Waterloo, ON, Canada. Lecture Notes in Computer Science, pp. 233–244 (2012).
Su M., Winterhof A.: Autocorrelation of Legendre–Sidelnikov sequences. IEEE Trans. Inf. Theory 56, 1714–1718 (2010).
Su M., Winterhof A.: Correlation measure of order \(k\) and linear complexity profile of Legendre-Sidelnikov sequences. IEICE Trans. 95–A(11), 1851–1854 (2012).
Topuzoğlu A., Winterhof A.: Pseudorandom Sequences. Topics in Geometry, Coding Theory and Cryptography, vol. 6, pp. 135–166. Springer, Dordrecht (2007).
Winterhof A.: A note on the linear complexity profile of the discrete logarithm in finite fields. In: Feng K.Q., Niederreiter H., Xing C.P. (eds.) Coding, Cryptography and Combinatorics, pp. 359–368. Birkhäuser, Basel (2004).
http://en.wikipedia.org/wiki/Artin%27s_conjecture_on_primitive_roots. Accessed 28 Feb 2013.
http://en.wikipedia.org/wiki/Sophie_Germain_prime. Accessed 12 Oct 2013.
Acknowledgments
The author would like to thank anonymous referees for valuable comments, and express his sincere thanks for hospitality during his visit to RICAM, Austrian Academy of Science, and some useful discussions with Arne Winterhof that led to this work. He is supported by National Natural Science Foundation of China (No. 61003070), and partially by NSFC (No. 61070014, 61373018).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by A. Winterhof.
Rights and permissions
About this article
Cite this article
Su, M. On the linear complexity of Legendre–Sidelnikov sequences. Des. Codes Cryptogr. 74, 703–717 (2015). https://doi.org/10.1007/s10623-013-9889-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-013-9889-1