Abstract
Random-key genetic algorithms were introduced by Bean (ORSA J. Comput. 6:154–160, 1994) for solving sequencing problems in combinatorial optimization. Since then, they have been extended to handle a wide class of combinatorial optimization problems. This paper presents a tutorial on the implementation and use of biased random-key genetic algorithms for solving combinatorial optimization problems. Biased random-key genetic algorithms are a variant of random-key genetic algorithms, where one of the parents used for mating is biased to be of higher fitness than the other parent. After introducing the basics of biased random-key genetic algorithms, the paper discusses in some detail implementation issues, illustrating the ease in which sequential and parallel heuristics based on biased random-key genetic algorithms can be developed. A survey of applications that have recently appeared in the literature is also given.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aarts, E.H.L., Van Laarhoven, P.J.M., Lenstra, J.K., Ulder, N.L.J.: A computational study of local search algorithms for job shop scheduling. INFORMS J. Comput. 6, 118–125 (1994)
Aiex, R.M., Binato, S., Resende, M.G.C.: Parallel GRASP with path-relinking for job shop scheduling. Parallel Comput. 29, 393–430 (2003)
Alvarez-Valdes, R., Parreño, F., Tamarit, J.M.: A GRASP algorithm for constrained two-dimensional non-guillotine cutting problems. J. Oper. Res. Soc. 56, 414–425 (2005)
Alvarez-Valdes, R., Parreño, F., Tamarit, J.M.: A tabu search algorithm for a two-dimensional non-guillotine cutting problem. Eur. J. Oper. Res. 183, 1167–1182 (2007)
Andrade, D.V., Buriol, L.S., Resende, M.G.C., Thorup, M.: Survivable composite-link IP network design with OSPF routing. In: Proceedings of The Eighth INFORMS Telecommunications Conference (2006)
Baar, T., Brucker, P., Knust, S.: Tabu-search algorithms and lower bounds for the resource-constrained project scheduling problem. In: Voss, S., Martello, S., Osman, I., Roucairol, C. (eds.) Meta-Heurisitics: Advances and Trends in Local Search Paradigms for Optimization, pp. 1–8. Kluwer, Dordrecht (1998)
Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 6, 154–160 (1994)
Beasley, J.E.: An exact two-dimensional non-guillotine cutting tree search procedure. Oper. Res., 49–64 (1985)
Beasley, J.E.: A population heuristic for constrained two-dimensional non-guillotine cutting. Eur. J. Oper. Res. 156, 601–627 (2004)
Binato, S., Hery, W.J., Loewenstern, D.M., Resende, M.G.C.: A GRASP for job shop scheduling. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys in Metaheuristics. Kluwer Academic, Dordrecht (2002)
Bouleimen, K., Lecocq, H.: A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version. Eur. J. Oper. Res. 149, 268–281 (2003)
Breslau, L., Diakonikolas, I., Duffield, N., Gu, Y., Hajiaghayi, M., Johnson, D.S., Karloff, H., Resende, M.G.C., Sen, S.: Node placement for path disjoint monitoring. Technical report, AT&T Labs Research, Shannon Laboratory, Florham Park, NJ 07932, USA (2009)
Buriol, L.S., Resende, M.G.C., Ribeiro, C.C., Thorup, M.: A hybrid genetic algorithm for the weight setting problem in OSPF/IS-IS routing. Networks 46, 36–56 (2005)
Buriol, L.S., Resende, M.G.C., Thorup, M.: Survivable IP network design with OSPF routing. Networks 49, 51–64 (2007)
Buriol, L.S., Hirsch, M.J., Pardalos, P.M., Querido, T., Resende, M.G.C., Ritt, M.: A hybrid genetic algorithm for road congestion minimization. In: Proceedings of the XLI Symposium of the Brazilian Operational Research Society (XLI SBPO), Porto Seguro, Brazil (2009)
Chandrasekharan, M.P., Rajagopalan, R.: ZODIAC—an algorithm for concurrent formation of part-families and machine-cells. Int. J. Prod. Res. 25, 835–850 (1987)
Cheng, C.H., Gupta, Y.P., Lee, W.H., Wong, K.F.: A TSP-based heuristic for forming machine groups and part families. Int. J. Prod. Res. 36, 1325–1337 (1998)
Christofides, N., Whitlock, C.: An algorithm for two-dimensional cutting problems. Operations Research, 30–44 (1977)
Debels, D., Vanhoucke, M.: A decomposition-based heuristic for the resource-constrained project scheduling problem. Technical report, Ghent University, Faculty of Economics and Business Administration, Belgium (2005)
Debels, D., De Reyck, B., Leus, R., Vanhoucke, M.: A hybrid scatter search/electromagnetism meta-heuristic for project scheduling. Eur. J. Oper. Res. 169, 638–653 (2006)
Della Croce, F., Tadei, R., Volta, G.: A genetic algorithm for the job shop problem. Comput. Oper. Res. 22, 15–24 (1995)
Dimopoulos, C., Mort, N.: A hierarchical clustering methodology based on genetic programming for the solution of simple cell-formation problems. Int. J. Prod. Res. 39, 1–19 (2001)
Dorndorf, U., Pesch, E.: Evolution based learning in a job shop scheduling environment. Comput. Oper. Res. 22, 25–40 (1995)
Ericsson, M., Resende, M.G.C., Pardalos, P.M.: A genetic algorithm for the weight setting problem in OSPF routing. J. Comb. Optim. 6, 299–333 (2002)
Fekete, S., Schepers, J.: A new exact algorithm for general orthogonal d-dimensional knapsack problems. In: Algorithms, ESA’97, pp. 144–156. Springer, Berlin (1997)
Fekete, S.P., Schepers, J.: A combinatorial characterization of higher-dimensional orthogonal packing. Mathematics of Operations Research, 353–368 (2004)
Feo, T.A., Resende, M.G.C.: A probabilistic heuristic for a computationally difficult set covering problem. Oper. Res. Lett. 8, 67–71 (1989)
Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. Glob. Optim. 6, 109–133 (1995)
Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local job-shop scheduling rules. In: Muth, J.F., Thompson, G.L. (eds.) Industrial Scheduling, pp. 225–251. Prentice-Hall, Englewood Cliffs (1963)
Fleszar, K., Hindi, K.S.: Solving the resource-constrained project scheduling problem by a variable neighbourhood search. Eur. J. Oper. Res. 155, 402–413 (2004)
Fontes, D., Hadjiconstantinou, E., Christofides, N.: Upper bounds for single source uncapacitated minimum concave-cost network flow problems. Networks 41, 221–228 (2003)
Fontes, D.B.M.M., Gonçalves, J.F.: Heuristic solutions for general concave minimum cost network flow problems. Networks 50, 67–76 (2007)
Fontes, D.B.M.M., Hadjiconstantinou, E., Christofides, N.: A dynamic programming approach for solving single-source uncapacitated concave minimum cost network flow problems. Eur. J. Oper. Res. 174, 1205–1219 (2006)
Fortz, B., Thorup, M.: Increasing internet capacity using local search. Comput. Optim. Appl. 29, 13–48 (2004). Preliminary short version of this paper published as “Internet Traffic Engineering by Optimizing OSPF weights,” in Proc. IEEE INFOCOM 2000, The Conference on Computer Communications
Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics. Kluwer Academic, Dordrecht (2003)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)
Gonçalves, J.F.: A hybrid genetic algorithm-heuristic for a two-dimensional orthogonal packing problem. Eur. J. Oper. Res. 183, 1212–1229 (2007)
Gonçalves, J.F., Almeida, J.: A hybrid genetic algorithm for assembly line balancing. J. Heuristics 8, 629–642 (2002)
Gonçalves, J.F., Beirão, N.C.: Um algoritmo genético baseado em chaves aleatórias para sequenciamento de operações. Rev. Desenvolv. Investig. Oper. 19, 123–137 (1999)
Gonçalves, J.F., Resende, M.G.C.: An evolutionary algorithm for manufacturing cell formation. Comput. Ind. Eng. 47, 247–273 (2004)
Gonçalves, J.F., Resende, M.G.C.: A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem. J. Comb. Optim. (2010). doi:10.1007/s10878-009-9282-1
Gonçalves, J.F., Mendes, J.J.M., Resende, M.G.C.: A hybrid genetic algorithm for the job shop scheduling problem. Eur. J. Oper. Res. 167, 77–95 (2005)
Gonçalves, J.F., Mendes, J.J.M., Resende, M.G.C.: A genetic algorithm for the resource constrained multi-project scheduling problem. Eur. J. Oper. Res. 189, 1171–1190 (2008)
Gonçalves, J.F., Resende, M.G.C., Mendes, J.J.M.: A biased random-key genetic algorithm with forward-backward improvement for the resource constrained project scheduling problem. Technical report, AT&T Labs Research J. Heuristics (2009a, to appear)
Gonçalves, J.F., Resende, M.G.C., Silva, R.M.A.: Biased versus unbiased random key genetic algorithms: a experimental analysis. Technical report, AT&T Labs Research (2009b)
Hadjiconstantinou, E., Christofides, N.: An exact algorithm for general, orthogonal, two-dimensional knapsack problems. Eur. J. Oper. Res. 83, 39–56 (1995)
Hadjiconstantinou, E., Iori, M.: A hybrid genetic algorithm for the two-dimensional knapsack problem. Eur. J. Oper. Res. 183, 1150–1166 (2007a)
Hadjiconstantinou, E., Iori, M.: A hybrid genetic algorithm for the two-dimensional single large object placement problem. Eur. J. Oper. Res. 183, 1150–1166 (2007b)
Hart, J.P., Shogan, A.W.: Semi-greedy heuristics: an empirical study. Oper. Res. Lett. 6, 107–114 (1987)
Hartmann, S.: A self-adapting genetic algorithm for project scheduling under resource constraints. Nav. Res. Logist. 49, 433–448 (2002)
Hartmann, S.: A competitive genetic algorithm for resource-constrained project scheduling. Nav. Res. Logist. 45, 279–302 (1998)
Hifi, M.: Exact algorithms for the guillotine strip cutting/packing problem. Comput. Oper. Res. 25, 925–940 (1998)
Hoffmann, T.R.: Assembly line balancing: a set of challenging problems. Int. J. Prod. Res. 28, 1807–1815 (1990)
Hoffmann, T.R.: EUREKA: a hybrid system for assembly line balancing. Manag. Sci. 38, 39–47 (1992)
Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1975)
Hopper, E., Turton, B.C.H.: An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem. Eur. J. Oper. Res. 128, 34–57 (2001)
Jakobs, S.: On genetic algorithms for the packing of polygons. Eur. J. Oper. Res. 88, 165–181 (1996)
Kochetov, Y., Stolyar, A.: Evolutionary local search with variable neighborhood for the resource constrained project scheduling problem. In: Proceedings of the 3rd International Workshop of Computer Science and Information Technologies (2003)
Kolisch, R.: Project Scheduling Under Resource Constraints: Efficient Heuristics for Several Problem Classes. Physica-Verlag, Heidelburg (1995)
Kolisch, R.: Serial and parallel resource-constrained project scheduling methods revisited: theory and computation. Eur. J. Oper. Res. 90, 320–333 (1996a)
Kolisch, R.: Efficient priority rules for the resource-constrained project scheduling problem. J. Oper. Manag. 14, 179–192 (1996b)
Kolisch, R., Drexl, A.: Adaptative search for solving hard project scheduling problems. Nav. Res. Logist. 43, 23–40 (1996)
Kolisch, R., Sprecher, A., Drexl, A.: Characterization and generation of a general class of resource-constrained project scheduling problems. Manag. Sci. 41, 1693–1703 (1995)
Lai, K.K., Chan, W.M.: An evolutionary algorithm for the rectangular cutting stock problem. Int. J. Ind. Eng. 4, 130–139 (1997)
Lawrence, S.: Resource constrained project scheduling: an experimental investigation of heuristic scheduling techniques. Technical report, Graduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, PA (1984)
Leon, V.J., Ramamoorthy, B.: Strength and adaptability of problem-space based neighborhoods for resource constrained scheduling. OR Spektrum 17, 173–182 (1995)
Leung, T.W., Chan, C.K., Troutt, M.D.: Application of a mixed simulated annealing-genetic algorithm heuristic for the two-dimensional orthogonal packing problem. Eur. J. Oper. Res. 145, 530–542 (2003)
Li, G.: Single machine earliness and tardiness scheduling. Eur. J. Oper. Res. 96, 546–558 (1997)
Mendes, J.J.M., Gonçalves, J.F., Resende, M.G.C.: A random key based genetic algorithm for the resource constrained project scheduling problem. Comput. Oper. Res. 36, 92–109 (2009)
Möhring, R.H., Schulz, A.S., Stork, F., Uetz, M.: Solving project scheduling problems by minimum cut computations. Manag. Sci. 49, 330–350 (2003)
Nonobe, K., Ibaraki, T.: Formulation and tabu search algorithm for the resource constrained project scheduling problem. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys in Metaheuristics, pp. 557–588. Kluwer Academic, Dordrecht (2002)
Noronha, T.F., Ribeiro, C.C.: Routing and wavelength assign by partition coloring. Eur. J. Oper. Res. 171, 797–810 (2006)
Noronha, T.F., Resende, M.G.C., Ribeiro, C.C.: A biased random-key genetic algorithm for routing and wavelength assignment. Technical report, AT&T Labs Research, Florham Park, NJ 07932 (2010)
Nowicki, E., Smutnicki, C.: A fast taboo search algorithm for the job shop problem. Manag. Sci. 42, 797–813 (1996)
Oliveira, J.F.: Private communication (2004)
Onwubolu, G.C., Mutingi, M.: A genetic algorithm approach to cellular manufacturing systems. Comput. Ind. Eng. 39, 125–144 (2001)
Palpant, M., Artigues, C., Michelon, P.: LSSPER: solving the resource-constrained project scheduling problem with large neighbourhood search. Ann. Oper. Res. 131, 237–257 (2004)
Pardalos, P.M., Resende, M.G.C. (eds.) Handbook of Applied Optimization. Oxford University Press, Oxford (2002)
Reis, R., Ritt, M., Buriol, L.S., Resende, M.G.C.: A biased random-key genetic algorithm for OSPF and DEFT routing to minimize network congestion. Technical report, AT&T Labs Research, Florham Park, NJ 07932. Int. Trans. Oper. Res. (2011, to appear)
Schirmer, A., Riesenberg, S.: Case-based reasoning and parameterized random sampling for project scheduling. Technical report, University of Kiel, Germany (1998)
Scholl, A.: Data of assembly line balancing problems. Technical Report 16/1993, Schriften zur Quantitativen Betriebswirtschaftslehre, TU Darmstadt (1993)
Scholl, A., Voß, S.: Simple assembly line balancing—Heuristic approaches. J. Heuristics 2, 217–244 (1997)
Skorin-Kapov, N.: Routing and wavelength assignment in optical networks using bin packing based algorithms. Eur. J. Oper. Res. 177, 1167–1179 (2007)
Spears, W.M., DeJong, K.A.: On the virtues of parameterized uniform crossover. In: Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 230–236 (1991)
Srinivasan, G.: A clustering algorithm for machine cell formation in group technology using minimum spanning trees. Int. J. Prod. Res. 32, 2149–2158 (1994)
Srinivasan, G., Narendran, T.T.: GRAFICS—a nonhierarchical clustering algorithm for group technology. Int. J. Prod. Res. 29, 463–478 (1991)
Storer, R.H., Wu, S.D., Park, I.: Genetic algorithms in problem space for sequencing problems. In: Proceedings of a Joint US-German Conference on Operations Research in Production Planning and Control, pp. 584–597 (1992)
Talbot, F.B., Patterson, J.H., Gehrlein, W.V.: A comparative evaluation of heuristic line balancing techniques. Manag. Sci. 32, 430–454 (1986)
Tormos, P., Lova, A.: Integrating heuristics for resource constrained project scheduling: one step forward. Technical report, Department of Statistics and Operations Research, Universidad Politecnica de Valencia (2003)
Valente, J.M.S.: Heuristics for the single machine scheduling problem with early and quadratic tardy penalties. Eur. J. Ind. Eng. 1, 431–448 (2007)
Valente, J.M.S.: Beam search heuristics for the single machine scheduling problem with linear earliness and quadratic tardiness costs. Asia-Pac. J. Oper. Res. 26, 319–339 (2009)
Valente, J.M.S., Gonçalves, J.F.: A genetic algorithm approach for the single machine scheduling problem with linear earliness and quadratic tardiness penalties. Comput. Oper. Res. 35, 3696–3713 (2008)
Valente, J.M.S., Gonçalves, J.F., Alves, R.A.F.S.: A hybrid genetic algorithm for the early/tardy scheduling problem. Asia-Pac. J. Oper. Res. 23, 393–405 (2006)
Valls, V., Ballestin, J., Quintanilla, M.S.: A hybrid genetic algorithm for the RCPSP. Technical report, Department of Statistics and Operations Research, University of Valencia (2003)
Valls, V., Ballestin, F., Quintanilla, M.S.: A population-based approach to the resource-constrained project scheduling problem. Ann. Oper. Res. 131, 305–324 (2004)
Valls, V., Ballestin, F., Quintanilla, M.S.: Justification and RCPSP: a technique that pays. Eur. J. Oper. Res. 165, 375–386 (2005)
Wang, L., Zheng, D.Z.: An effective hybrid optimization strategy for job-shop scheduling problems. Comput. Oper. Res. 28, 585–596 (2001)
Wang, P.Y.: Two algorithms for constrained two-dimensional cutting stock problems. Oper. Res., 573–586 (1983)
Author information
Authors and Affiliations
Corresponding author
Additional information
This research was partially supported by Fundação para a Ciência e Tecnologia (FCT) project PTDC/GES/72244/2006. AT&T Labs Research Technical Report.
Rights and permissions
About this article
Cite this article
Gonçalves, J.F., Resende, M.G.C. Biased random-key genetic algorithms for combinatorial optimization. J Heuristics 17, 487–525 (2011). https://doi.org/10.1007/s10732-010-9143-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10732-010-9143-1