Abstract
A novel methodology is proposed to select the on-line, near-optimal positions and orientations of a set of dynamic cameras, for a reconfigurable multi-camera active-vision system to capture the motion of a deformable object. The active-vision system accounts for the deformation of the object-of-interest by fusing tracked vertices on its surface with those triangulated from features detected in each camera’s view, in order to predict the shape of the object at subsequent demand instants. It then selects a system configuration that minimizes error in the recovered position of each of these features. The tangible benefits of using a reconfigurable system, particularly with translational cameras, versus systems with static cameras in a fixed configuration, are demonstrated through simulations and experiments in both obstacle-free and obstacle-laden environments.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
White, R., Crane, K., Forsyth D.: Capturing and animating occluded cloth. ACM Trans. Graph. 26, 34 (2007)
Bai, X., Liu, W., Wang, X., Latecki, L.J., Tu, Z.: Active skeleton for non-rigid object detection. In: IEEE Int. Conf. Computer Vision, Kyoto, Japan, pp. 575–582 (2009)
Park, S.I., Hodgins, J.K.: Capturing and animating skin deformation in human motion. ACM Trans. Graph. 25(3), 881–889 (2006)
Vlasic, D., et al.: Dynamic shape capture using multi-view photometric stereo. ACM Trans. Graph. 28(5), 174:1–147:11 (2009)
Drouin, S., Hebert, P., Parizeau, M.: Incremental discovery of object parts in video sequences. Comput. Vision Image Underst. 110, 60–74 (2008)
Scholz, V., Stich, T., Magnor, M., Keckeisen, M., Wacker, M.: Garment motion capture using color-coded patterns. CGF 24(3), 439–448 (2005)
Bradley, D., Heidrich, W., Popa, T., Sheffer, A.: High resolution passive facial performance capture. Proceedings of ACM SIGGRAPH (Los Angeles, USA, July 25–29, 2010). ACM Trans. Graph. 29(4), 41:1–41:10 (2010)
de Aguiar, E., et al.: Performance capture from sparse multi-view video. ACM Trans. Graph. 27(3), 98–108 (2008)
Cerezo, E., et al.: Real-Time facial expression recognition for natural interaction. In: Iberian Conf. Pattern Recognition and Image Analysis, pp. 40–47. Girona, Spain (2007)
Petit, B., et al.: Multicamera real-tme 3D modeling for telepresence and remote collaboration. Int. J. Digit. Multimed. Broadcast. 2010, 24108–12 (2009)
Lo, B., Chung, A., Stoyanov, D., Mylonas, G., Yan, G.Z.: Real-time intra-operative 3D tissue deformation recovery. In: IEEE Int. Symp. Biomedical Imaging, pp. 1387–1390. Paris, France (2008)
Richa, R., Bo, A.P., Poignet, P.: Towards robust 3D visual tracking for motion compensation in beating heart surgery. Med. Image Anal. 15(3), 301–315 (2011)
Sharf, A., et al.: Space-time surface reconstruction using incompressible flow. ACM Trans. Graph. 27(5), 110–120 (2008)
Chen, S., Li, Y., Ming Kwok, N.: Active vision in robotic systems: a survey of recent developments. Int. J. Robot. Res. 20(11), 1343–1377 (2011)
Chellappa, R., Roy-Chowdhury, A.K., Zhou, S.K.: Human Activity Recognition. Morgan & Claypool Publishing, San Rafael, CA (2005)
Abrams, S., Allen, P.K., Tarabanis, K.A.: Dynamic sensor planning. In: IEEE Int. Conf. Robotics and Automation, pp. 605–610. Atlanta, GA (1993)
Miao, Y.-Q., Khamis, A., Kamel, M.: Coordinated motion control of mobile sensors in surveillance systems. In: Int. Conf. Signals, Circuits and Systems, pp. 1–6. Djerba, Tunisia (2009)
Caglioti, V.: A unified criterion for minimum uncertainty sensing in object recognition and localization. In: IEEE Int. Conf. on Intelligent Robots and Systems, pp. 1585–1590. Raleigh, NC (1992)
Beb, R., Paulus, D., Niemann, H.: 3D recovery using calibrated active cameras. In: Int. Conf. Image Processing, pp. 855–858. Lausanne, Switzerland (1996)
Farid, H., Lee, S.W., and Bajcsy, R.: View selection strategies for multi-view, wide-baseline stereo. Univ. of Pennsylvania, Dept. of Comput. Inform. Sci., Philadelphia, PA, Tech. Rep. MS-CIS-94-18 (1994)
Olague, G., Mohr, R.: Optimal camera placement for accurate reconstruction. Pattern Recog. 35(4), 927–944 (2002)
Klarquist, W.N., Bovik, A.C.: OVEA: a foveated vergent active stereo vision system for dynamic three-dimensional scene recovery. IEEE Trans. Robot. Autom. 14(5), 755–770 (1998)
Wu, X., Matsuyama, T.: Real-time active 3D shape reconstruction for 3D video. In: 3rd Int. Symp. Image Signal Processing Analysis, pp. 186–191. Rome, Italy (2003)
Tan, J.K., Ishikawa, S., Yamaguchi, I., Naito, T., Yokota, M.: 3-D recovery of human motion by mobile stereo cameras. Artif. Life Robot. 10, 64–68 (2006)
Mackay, M., Fenton, R., Benhabib, B.: Time-varying-geometry object surveillance using a multi-camera active-vision system. Int. J. Smart Sensing Intell. Syst. 1(3), 679–704 (2008)
Yous, S., Ukita, N., Masatsugu, K.: An assignment scheme to control multiple pan/tilt cameras for 3D video. J. Multimedia 2(1), 10–19 (2007)
Ilie, A., Welch, G., Macenko, M.: A stochastic quality metric for optimal control of active camera network configurations for 3D computer vision tasks. In: Workshop Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications. Marseille, France (2008)
Collins, R.T., Amidi, O., Kanade, T.: An active camera system for acquiring multi-view video. In: Conf. Image Processing, pp. 17–520. Rochester, NY (2002)
Davis, J.E.: Mixed scale motion recovery. Ph.D. Dissertation, Dept. Computer Science, Stanford Univ, Stanford, CA (2002)
Doshi, A., Starck, J., Hilton, A.: An empirical study of non-rigid surface feature matching of human from 3D Video. J. Virtual Real. Broadcast. 7(3), 1–20 (2010)
Canton-Ferrer, C., Casas, J.R., Tekalp, M., Pardas, M.: Projective Kalman filter: multiocular tracking of 3D locations towards scene understanding. Lecture Notes Comput. Sci. 3869, 250–261 (2006)
Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004)
Bolme, D.S., Beveridge, J.R., Draper, B.A.: Visual object tracking using adaptive correlation filters. In: Computer Vision and Pattern Recognition, pp. 2544–2550. San Francisco, CA (2010)
Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960)
Kokkinos, I., Yuille, A.: Unsupervised learning of object deformation models. In: IEEE Int. Conf. Computer Vision, pp. 1–8. Rio de Janeiro, Brazil (2007)
Gallup, D., Frahm, J.-M., Mordohai, P., Pollefeys, M.: Variable baseline/resolution stereo. In: Proc. Computer Vision and Pattern Recognition, pp. 1–8. Anchorage, AK (2008)
de Aguiar, E., Theobalt, C., Sto, C.: Marker-less deformable mesh tracking for human shape and motion capture. In: Proc. Computer Vision and Pattern Recognition, pp. 1–8. Minneapolis, MN (2007)
Vo, M., Wang, Z., Luu, L., Ma, J.: Advanced geometric camera calibration for machine vision. Opt. Eng. 50(11), 110503 (2011)
Veres, G.V., Gordon, L., Carter, J.N., Nixon, M.S.: What image information is important in silhouette-based gait recognition? In: Proc. Computer Vision and Pattern Recognition, pp. 776–782. Washington, D.C. (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Schacter, D.S., Donnici, M., Nuger, E. et al. A Multi-Camera Active-Vision System for Deformable-Object-Motion Capture. J Intell Robot Syst 75, 413–441 (2014). https://doi.org/10.1007/s10846-013-9961-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-013-9961-0