Abstract
Precision agriculture (PA) is the application of geospatial techniques and sensors (e.g., geographic information systems, remote sensing, GPS) to identify variations in the field and to deal with them using alternative strategies. In particular, high-resolution satellite imagery is now more commonly used to study these variations for crop and soil conditions. However, the availability and the often prohibitive costs of such imagery would suggest an alternative product for this particular application in PA. Specifically, images taken by low altitude remote sensing platforms, or small unmanned aerial systems (UAS), are shown to be a potential alternative given their low cost of operation in environmental monitoring, high spatial and temporal resolution, and their high flexibility in image acquisition programming. Not surprisingly, there have been several recent studies in the application of UAS imagery for PA. The results of these studies would indicate that, to provide a reliable end product to farmers, advances in platform design, production, standardization of image georeferencing and mosaicing, and information extraction workflow are required. Moreover, it is suggested that such endeavors should involve the farmer, particularly in the process of field design, image acquisition, image interpretation and analysis.
Similar content being viewed by others
References
Aber, J. S., Aaviksoo, K., Karofeld, E., & Aber, S. W. (2002). Patterns in Estonian bogs as depicted in color kite aerial photographs. Suo, 53, 1–15.
Aber, J. S., Aber, S. W., Buster, L., Jensen, W. E., & Sleezer, R. O. (2009). Challenge of infrared kite aerial photography: A digital update. Kansas Academy of Science Transactions, 112, 31–39.
Aber, J. S., Marzolff, I., & Ries, J. B. (2010). Small-format aerial photography. Boston: Elsevier. 266.
Adrian, A. M., Norwood, S. H., & Mask, P. L. (2005). Producers’ perceptions and attitudes toward precision agriculture technologies. Computer and Electronics in Agriculture, 48, 256–271.
Amoroso, L., & Arrowsmith, R. (2000). Balloon photography of brush fire scars east of Carefree, AZ. Retrieved March 12, 2012 from http://activetectonics.asu.edu/Fires_and_Floods/10_24_00_photos/.
Aylor, D. E., Boehm, M. T., & Shields, E. J. (2006). Quantifying aerial concentrations of maize pollen in the atmospheric surface layer using remotely-piloted airplanes and Lagrangian stochastic modeling. Journal of Applied Meteorology and Climatology, 45, 1003–1015.
Bausch, W. C., & Khosla, R. (2010). QuickBird satellite versus ground-based multi-spectral data for estimating nitrogen status of irrigated maize. Precision Agriculture, 11, 274–290.
Beeri, O., & Peled, A. (2009). Geographical model for precise agriculture monitoring with real-time remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 47–54.
Beeri, O., Phillips, R., Carson, P., & Liebig, M. (2005). Alternate satellite models for estimation of sugar beet residue nitrogen credit. Agriculture, Ecosystems & Environment, 107, 21–35.
Berni, J. A. J., Zarco-Tejada, P. J., Suarez, L., & Fereres, E. (2009a). Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Transactions on Geoscience and Remote Sensing, 47, 722–738.
Berni, J. A. J., Zarco-Tejada, P. J., Suarez, L., Gonzalez-Dugo, V., & Fereres, E. (2009a). Remote sensing of vegetation from UAV platforms using lightweight multispectral and thermal imaging sensors. Retrieved March 12, 2012 from http://www.ipi.uni-hannover.de/fileadmin/institut/pdf/isprs-Hannover2009/Jimenez_Berni-155.pdf.
Blackmore, S. (2000). The interpretation of trends from multiple yield maps. Computers and Electronics in Agriculture, 26, 37–51.
Blackmore, S., Godwin, R. J., & Fountas, S. (2003). The analysis of spatial and temporal trends in yield map data over six years. Biosystems Engineering, 84, 455–466.
Castillejo-Gonzalez, I. L., Lopez-Granados, F., Garcia-Ferrer, A., Pena-Barragan, J. M., Jurado-Exposito, M., Orden, M. S., et al. (2009). Object- and pixel-based analysis for mapping crops and their agro-environmental associated measures using QuickBird imagery. Computers and Electronics in Agriculture, 68, 207–215.
Chandler, J., Fryer, J. G., & Jack, A. (2005). Metric capabilities of low-cost digital cameras for close range surface measurement. The Photogrammetric Record, 20, 12–26.
Clevers, J. G. P. W. (1988). The derivation of a simplified reflectance model for the estimation of leaf area index. Remote Sensing of Environment, 35, 53–70.
Colewell, R. N. (1956). Determining the prevalence of certain cereal crop diseases by means of aerial photography. Hilgardia, 26, 223–286.
Cook, S. E., & Bramley, R. G. V. (1998). Precision agriculture: Opportunities, benefits and pitfalls of site specific crop management in Australia. Australian Journal of Experimental Agriculture, 38, 753–763.
De Tar, W. R., Chesson, J. H., Penner, J. V., & Ojala, J. C. (2008). Detection of soil properties with airborne hyperspectral measurements of bare fields. Transactions of the ASABE, 51, 463–470.
Diker, K., Heermann, D. F., & Bordahl, M. K. (2004). Frequency analysis of yield for delineating yield response zones. Precision Agriculture, 5, 435–444.
Donoghue, D., Watt, P., Cox, N., & Wilson, J. (2006). Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data. International Workshop 3D remote sensing in Forestry. Retrieved March 12, 2012 form (http://www.rali.boku.ac.at/fileadmin/_/H857-VFL/workshops/3drsforestry/presentations/6a.5-donoghue.pdf).
Du, Q., Chang, N. B., Yang, C. H., & Srilakshmi, K. R. (2008). Combination of multispectral remote sensing, variable rate technology and environmental modeling for citrus pest management. Journal of Environmental Management, 86, 14–26.
Eisenbeiss, H. (2004). A mini unmanned aerial vehicle (UAV): system over and image acquisition. In: A. Gruen, Sh. Murai, T. Fuse, F. Remondino (Eds.). Proceedings of International Workshop on Processing and Visualization Using High-Resolution Imagery, XXXVI(5/W1), Pitsanulok, Thailand. CDROM. Retrieved March 12, 2012 from http://www.isprs.org/proceedings/XXXVI/5-W1/papers/11.pdf.
Enclona, E. A., Thenkabail, P. S., Celis, D., & Diekmann, J. (2004). Within-field wheat yield prediction from IKONOS data: A new matrix approach. International Journal of Remote Sensing, 25, 377–388.
Erickson, B. J., Johannsen, C. J., Vorst, J. J., & Biehl, L. L. (2004). Using remote sensing to assess stand loss and defoliation in maize. Photogrammetric Engineering and Remote Sensing, 70, 717–722.
Eugster, H., & Nebiker, S. (2007). Geo-registration of video sequences captured from Mini UAVs: Approaches and accuracy assessment. The 5th International Symposium on Mobile Mapping Technology, Padua, Italy. Retrieved March 12, 2012 from http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cts=1331769791050&ved=0CCYQFjAA&url=http%3A%2F%2Fwww.3dgi.ch%2Fpublications%2Feh%2F2007_MMT07_Padua_final.pdf&ei=rzFhT9LrN4aJtwe9w9W-BQ&usg=AFQjCNHlP4X-S3DkZib-OdlEap7T4JBtg.
Fisher, P. D., Abuzar, M., Rab, M. A., Best, F., & Chandra, S. (2009). Advances in precision agriculture in south-eastern Australia. I. A regression methodology to simulate spatial variation in cereal yields using farmers’ historical paddock yields and normalised difference vegetation index. Crop & Pasture Science, 60, 844–858.
Flowers, M., Weisz, R., & White, J. G. (2005). Yield-based management zones and grid sampling strategies: Describing soil test and nutrient variability. Agronomy Journal, 97, 968–982.
Godwin, R. J., Richards, T. E., Wood, G. A., Welsh, J. P., & Knight, S. M. (2003). An economic analysis of the potential for precision farming in UK cereal production. Biosystems Engineering, 84, 533–545.
Gomez, C., Rossel, R. A. V., & McBratney, A. B. (2008). Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study. Geoderma, 146, 403–411.
Gomez-Candon, D., Lopez-Granados, F., Caballero-Novella, J. J., Gomez-Casero, M. T., Jurado-Exposito, M., & Garcia-Torres, L. (2011). Geo-referencing remote images for precision agriculture using artificial terrestrial _targets. Precision Agriculture, 12, 876–891.
Gomez-Casero, M. T., Castillejo-Gonzalez, I. L., Garcia-Ferrer, A., Pena-Barragan, J. M., Jurado-Exposito, M., Garcia-Torres, L., et al. (2010). Spectral discrimination of wild oat and canary grass in wheat fields for less herbicide application. Agronomy for Sustainable Development, 30, 689–699.
Griffin, T. W., Lowenberg-Deboer, J., Lambert, D. M., Peone, J., Payne, T., & Daberkow, S. G. (2004). Adoption, profitability, and making better use of precision farming data. Staff paper No. 04–06 West Lafayette, IN, USA: Department of Agricultural Economics, Purdue University.
Gutierrez, P. A., Lopez-Granados, F., Jurado-Exposito, J. M. P. M., & Hervas-Martinez, C. (2008). Logistic regression product-unit neural networks for mapping Ridolfia segetum infestations in sunflower crop using multitemporal remote sensed data. Computers and Electronics in Agriculture, 64, 293–306.
Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90, 337–352.
Hardin, P. J., & Hardin, T. J. (2010). Small-scale remotely piloted vehicles in environmental research. Geography Compass, 4, 1297–1311.
Hardin, P., & Jackson, M. (2005). An unmanned aerial vehicle for rangeland photography. Rangeland Ecology & Management, 58, 439–442.
Hardin, P. J., Jackson, M. W., Anderson, V. J., & Johnson, R. (2007). Detecting squarrose knapweed (Centaurea virgata Lam. Ssp. Squarrosa Gugl.) using a remotely piloted vehicle: A Utah case study. GIScience & Remote Sensing, 44, 203–219.
Hardin, P. J., & Jensen, R. R. (2011). Small-scale unmanned aerial vehicles in environmental remote sensing: Challenges and opportunities. GIScience & Remote Sensing, 48, 99–111.
Hinkleya, E. A., & Zajkowski, T. (2011). USDA forest service-NASA: Unmanned aerial systems demonstrations-pushing the leading edge in fire mapping. Geocarto International, 26, 103–111.
Huang, Y., Lan, Y., Hoffmann, W. C., & Fritz, B. K. (2008). Development of an unmanned aerial vehicle-based remote sensing system for site-specific management in precision agriculture. In Proceedings of the 9th International Symposium on Precision Agriculture. Denver, CO. CDROM.
Hunt, E. R., Cavigelli, M., Daughtry, C. S. T., McMurtrey, J. E., & Walthall, C. L. (2005). Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precision Agriculture, 6, 359–378.
Hunt, E. R., Daughtry, C. S., Walthall, C. L., McMurtrey, J. E., & Dulaney, W. P. (2003). Agricultural remote sensing using radio-controlled aircraft. In: T. VanToai, D. Major, M. McDonald, J. Schepers & L. Tarpley (Eds.). Digital image and spectral techniques: Applications to precision agriculture and crop physiology. ASA Special Publications Number 66. Madison, WI, USA: American Society of Agronomy, pp. 197–205.
Hunt, E. R., Hively, W. D., Daughtry, C. S., McCarty, G. W., Fujikawa, S. J., Ng, T. L., Tranchitella, M., Linden, D. S., & Yoel, D. W. (2008). Remote sensing of crop leaf area index using unmanned airborne vehicles. In ASPRS Pecora 17 Conference Proceeding, Bethesda, MD: American Society for Photogrammetry and Remote Sensing. CDROM. Retrieved March 12, 2012 from http://www.asprs.org/a/publications/proceedings/pecora17/0018.pdf.
Hunt, E. R., Hively, W. D., Fujikawa, S. J., Linden, D. S., Daughtry, C. S. T., & McCarty, G. W. (2010). Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring. Remote Sensing, 2, 290–305.
Inoue, Y., Morinaga, S., & Tomita, A. (2000). A blimp-based remote sensing system for low-altitude monitoring of plant variables: A preliminary experiment for agricultural and ecological applications. International Journal of Remote Sensing, 21, 379–385.
Jackson, R. D. (1984). Remote sensing of vegetation characteristics for farm management. Proceedings of the Society of Photo-Optical Instrumentation Engineers, 475, 81–96.
Johnson, L. F., Herwitz, S. R., Lobitz, B. M., & Dunagan, S. E. (2004). Feasibility of monitoring coffee field ripeness with airborne multispectral imagery. Applied Engineering in Agriculture, 20, 845–849.
Jones, G. P., Pearlstine, L. G., & Percival, H. F. (2006). An assessment of small unmanned aerial vehicles for wildlife research. Wildlife Society Bulletin, 34, 750–758.
Kendoul, F., Lara, D., Fantoni-Coichot, I., & Lozano, R. (2007). Real-time nonlinear embedded control for an autonomous quadrotor helicopter. Journal of Guidance Control and Dynamics, 30, 1049–1061.
Laliberte, A. S., Herrick, J. E., & Rango, A. (2010). Acquisition, orthorectification, and object-based classification of unmanned aerial vehicle (UAV) imagery for rangeland monitoring. Photogrammetric Engineering and Remote Sensing, 76, 661–672.
Laliberte, A. S., & Rango, A. (2009). Texture and scale in object-based analysis of sub-decimeter resolution unmanned aerial vehicle (UAV) imagery. IEEE Transactions on Geoscience and Remote Sensing, Special Issue on UAV Sensing Systems in Earth Observation, 47, 761–770.
Laliberte, A. S., & Rango, A. (2011). Image processing and classification procedures for analysis of sub-decimeter imagery acquired with an unmanned aircraft over arid rangelands. GIScience & Remote Sensing, 48, 4–23.
Laliberte, A. S., Rango, A., & Fredrickson, E. L. (2005). Multi-scale, object-oriented analysis of QuickBird imagery for determining percent cover in arid land vegetation. In: 20th Biennial Workshop on Aerial Photography, Videography, and High Resolution Digital Imagery for Resource Assessment. Weslaco, TX. CDROM. Retrieved March 12, 2012 from https://jornada.nmsu.edu/bibliography/05-055Proc.pdf.
Laliberte, A. S., Rango, A., & Herrick, J. (2007). Unmanned aerial vehicles for rangeland mapping and monitoring: a comparison of two systems. In Proceeding of ASPRS 2007 Annual Conference. Tampa, FL. CDROM. Retrieved March 12, 2012 from http://www.asprs.org/a/publications/proceedings/tampa2007/0039.pdf.
Lamb, J. A., Anderson, J. L., Malzer, G. L., Vetch, J. A., Dowdy, R. H., Onken, D. S., et al. (1995). Perils of monitoring grain yield on-the-go. In P. C. Robert, R. H. Rust, & W. E. Larson (Eds.), Site-specific management for agricultural systems (pp. 87–90). Madison: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Lamb, D. W., & Brown, R. B. (2001). Remote-sensing and mapping of weeds in crops. Journal of Agricultural Engineering Research, 78, 117–125.
Lamb, D. W., Frazier, P., & Adams, P. (2008). Improving pathways to adoption: Putting the right P’s in precision agriculture. Computers and Electronics in Agriculture, 61, 4–9.
Lambert, D., & Lowenberg-Deboer, J. (2000). Precision agriculture profitability review (p. 154). Purdue, USA: Site Specific Management Center.
Lan, Y., Huang, Y., Martin, D. E., & Hoffmann, W. C. (2009). Development of an airborne remote sensing system for crop pest management: System integration and verification. Transactions of the ASABE, 25, 607–615.
Lelong, C. C. D., Burger, P., Jubelin, G., Roux, B., Labbe, S., & Barett, F. (2008). Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots. Sensors, 8, 3557–3585.
Lelong, C. C. D., Pinet, P. C., & Poilvé, H. (1998). Hyperspectral imaging and stress mapping in agriculture: A case study on wheat in Beauce (France). Remote Sensing of Environment, 66, 179–191.
Lewis, G. (2007). Evaluating the use of a low-cost unmanned aerial vehicle platform in acquiring digital imagery for emergency response. In J. Li, S. Zlatanova, & A. Fabbri (Eds.), Geomatics solutions for disaster management (pp. 117–133). Berlin: Springer.
Long, D. S., Carlson, G. R., & DeGloria, S. D. (1995). Quality of field management maps. In P. C. Robert (Ed.), Proceedings of Site-Specific Management for Agriculture Systems (pp. 251–271). Madison: American Society of Agronomy.
Lopez-Lozano, R., Baret, F., de Cortazar-Atauri, I. G., Bertrand, N., & Casterad, M. A. (2009). Optimal geometric configuration and algorithms for LAI indirect estimates under row canopies: The case of vineyards. Agricultural and Forest Meteorology, 149, 1307–1316.
Lorenzen, B., & Jensen, A. (1989). Changes in leaf spectral properties induced in barley by cereal powdery mildew. Remote Sensing of Environment, 27, 201–209.
MacArthur, E. Z., MacArthur, D., & Crane, C. (2005). Use of cooperative unmanned air and ground vehicles for detection and disposal of mines. Proceedings of SPIE-The International Society for Optical Engineering, 5999, 94–101.
Maldonado-Ramirez, S. L., Schmale, D. G., Shields, E. J., & Bergstrom, G. C. (2005). The relative abundance of viable spores of Gibberella zeae in the planetary boundary layer suggests the role of long-distance transport in regional epidemics of Fusarium head blight. Agricultural and Forest Meteorology, 132, 20–27.
Malthus, T. J., & Maderia, A. C. (1993). High resolution spectroradiometry: Spectral reflectance of field bean leaves infected by Botrytis fabae. Remote Sensing of Environment, 45, 107–116.
McBratney, A., Whelan, B., & Ancev, T. (2005). Future directions of precision agriculture. Precision Agriculture, 6, 7–23.
McBratney, A. B., Whelan, B. M., & Shatar, T. (1997). Variability and uncertainty in spatial, temporal and spatio-temporal crop yield and related data. In: Precision agriculture: Spatial and temporal variability of environmental quality. Chichester: Wiley, pp. 141–160
McNairn, H., & Brisco, B. (2004). The application of C-band polarimetric SAR for agriculture: A review. Canadian Journal of Remote Sensing, 30, 525–542.
Monmonier, M. (2002). Aerial photography at the Agricultural Adjustment Administration: Acreage controls, conservation. Photogrammetric Engineering & Remote Sensing, 68, 1257–1261.
Moran, M. S., Inoue, Y., & Barnes, E. M. (1997). Opportunities and limitation for image-based remote sensing in precision crop Management. Remote Sensing of Environment, 61, 319–346.
Murakami, E., Saraiva, A. M., Ribeiro, L. C. M., Cugnasca, C. E., Hirakawa, A. R., & Correa, P. L. P. (2007). An infrastructure for the development of distributed service-oriented information systems for precision agriculture. Computers and Electronics in Agriculture, 58, 37–48.
Pena-Barragan, J. M., Lopez-Granados, F., Garcia-Torres, L., Jurado-Exposito, M., de la Orden, M. S., & Garcia-Ferrer, A. (2008). Discriminating cropping systems and agro-environmental measures by remote sensing. Agronomy for Sustainable Development, 28, 355–362.
Price, P. (2004). Spreading the PA message. Ground Cover, Issue 51 Grains Research and Development Corporation: Canberra, Australia Capital Territory, Australia.
Primicerio, J., Gennaro, S. F. D., Fiorillo, E., Genesio, L., Lugato, E., Matese, A., et al. (2012). A flexible unmanned aerial vehicle for precision agriculture. Precision Agriculture (Online first),. doi:10.1007/s11119-012-9257-6.
Quilter, M. C. (1997). Vegetation monitoring using low altitude, large scale imagery from radio controlled drones. PhD dissertation, Department of Botany and Range Science, Brigham Young University, Provo, UT, USA
Quilter, M. C., & Anderson, V. J. (2000). Low altitude/large scale aerial photographs: A tool for range and resource managers. Rangelands, 22, 13–17.
Quilter, M. C., & Anderson, V. J. (2001). A proposed method for determining shrub utilization using (LA/LS) imagery. Journal of Range Management, 54, 378–381.
Rango, A., & Laliberte, A. S. (2010). Impact of flight regulations on effective use of unmanned aerial vehicles for natural resources applications. Journal of Applied Remote Sensing, 4, 043539.
Rango, A., Laliberte, A. S., Herrick, J. E., Winters, C., Havstad, K., Steele, C., et al. (2009). Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring, and management. Journal of Applied Remote Sensing, 3, 033542.
Rao, N. R., Garg, P. K., & Ghosh, S. K. (2007). Development of an agricultural crops spectral library and classification of crops at cultivar level using hyperspectral data. Precision Agriculture, 8, 173–185.
Rao, N. R., Garg, P. K., Ghosh, S. K., & Dadhwal, V. K. (2008). Estimation of leaf total chlorophyll and nitrogen concentrations using hyperspectral satellite imagery. Journal of Agricultural Science, 146, 65–75.
Robert, P.C. (1996). Use of remote sensing imagery for precision farming. In: Proceedings of 26th International Symposium on Remote Sensing of Environment and 18th symposium of the Canadian Remote Sensing Society, Ontario, Canada, pp. 596–599.
Robertson, M., Carberry, P., & Brennan, L. (2007). The economic benefits of precision agriculture: cast studies from Australia grain farms. Retrieved March 12, 2012 from http://www.grdc.com.au/uploads/documents/Economics%20of%20Precision%20agriculture%20Report%20to%20GRDC%20final.pdf.
Nebiker, S. Annen, A., Scherrer, M., & Oesch, D. (2008). A light-weight multispectral sensor for micro UAV: Opportunities for very high resolution airborne remote sensing. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B1., pp. 1193–1200
Schmale, D. G., Dingus, B. R., & Reinholtz, C. (2008). Development and application of an autonomous aerial vehicle for precise aerobiological sampling above agricultural fields. Journal of Field Robotics, 25, 133–147.
Scotford, I. M., & Miller, P. C. H. (2005). Applications of spectral reflectance techniques in Northern European cereal production: A review. Biosystems Engineering, 90, 235–250.
Seang, T. P., & Mund, J. (2006). Balloon based geo-referenced digital photo technique: a low cost high-resolution option for developing countries. In Proceedings of XXIII FIG Congress. Munich, Germany. CDROM. Retrieved March 12, 2012 from http://www.fig.net/pub/fig2006/papers/ts73/ts73_02_mund_peng_0425.pdf.
Seelan, S. K., Laguette, S., Casady, G. M., & Seielstad, G. A. (2003). Remote sensing applications for precision agriculture: A learning community approach. Remote Sensing of Environment, 88, 157–169.
Shou, L., Jia, L. L., Cui, Z. L., Chen, X. P., & Zhang, F. S. (2007). Using high-resolution satellite imaging to evaluate nitrogen status of winter wheat. Journal of Plant Nutrition, 30, 1669–1680.
Silva, C. B., Vale, S. M. L. R., Pinto, F. A. C., Muller, C. A. S., & Moura, A. D. (2007). The economic feasibility of precision agriculture in Mato Grosso do Sul State, Brazil: A case study. Precision Agriculture, 8, 255–265.
Song, X., Wang, J., Huang, W., Liu, L., Yan, G., & Pu, R. (2009). The delineation of agricultural management zones with high resolution remotely sensed data. Precision Agriculture, 10, 471–487.
Stafford, J. V. (2000). Implementing precision agriculture in the 21st century. Journal of Agricultural Engineering Research, 76, 267–275.
Sugiura, R., Ishii, K., & Noguchi, N. (2004). Remote sensing technology for field information using an unmanned helicopter. In Proceedings of Automation Technology for Off-road Equipment. Paper No. 701P1004. ASABE, St Joseph, MI, USA.
Sugiura, R., Noguchi, N., Ishii, K., & Terao, H. (2002). The development of remote sensing system using unmanned helicopter. In Proceedings of Automation Technology for Off-road Equipment, 120–128. Paper No. 701P0502. ASABE, St Joseph, MI, USA.
Sullivan, D. G., Shaw, J. N., & Rickman, D. (2005). IKONOS imagery to estimate surface soil property variability in two Alabama physiographies. Soil Science Society of America Journal, 69, 1789–1798.
Swain, K. C., Jayasuriya, H. P. W., & Salokhe, V. M. (2007). Suitability of low-altitude remote sensing images for estimating nitrogen treatment variations in rice cropping for precision agriculture adoption. Journal of Applied Remote Sensing, 1, 013547.
Swain, K. C., Thomson, S. J., & Jayasuriya, H. P. W. (2010). Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop. Transactions of the ASABE, 53, 21–27.
Tenkorang, F., & DeBoer, L. (2007). On-farm profitability of remote sensing in agriculture. Journal of Terrestrial Observation, 1, 50–59.
Tomlins, G. F. (1983). Some considerations in the design of low-cost remotely-piloted aircraft for civil remote sensing applications. The Canadian Surveyor, 37, 157–167.
Torbett, J. C., Roberts, R. K., Larson, J. A., & English, B. C. (2008). Perceived improvements in nitrogen fertilizer efficiency from cotton precision farming. Computers and Electronics in Agriculture, 64, 140–148.
Vericat, D., Brasington, J., Wheaton, J., & Cowie, M. (2008). Accuracy assessment of aerial photographs acquired using lighter-than-air blimps: Low-cost tools for mapping river corridors. River Research and Applications, 25, 985–1000.
Warren, G., & Metternicht, G. (2005). Agricultural applications of high-resolution digital multispectral imagery: Evaluating within-field spatial variability of canola (Brassica napus) in Western Australia. Photogrammetric Engineering and Remote Sensing, 71, 595–602.
Whipker, L. D., & Akridge, J. T. (2009). Precision agricultural services dealership survey results. Retrieved March 12, 2012 from http://www.agecon.purdue.edu/cab/research_articles/articles/2009_crop_life_precision_report.pdf.
Wu, C., Niu, Z., Tang, Q., & Huang, W. (2008). Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agricultural and Forest Meteorology, 148, 1230–1241.
Wu, J. D., Wang, D., & Bauer, M. E. (2007a). Assessing broadband vegetation indices and QuickBird data in estimating leaf area index of corn and potato canopies. Field Crops Research, 102, 33–42.
Wu, J. D., Wang, D., & Rosen, C. J. (2007b). Comparison of petiole nitrate concentrations, SPAD chlorophyll readings, and QuickBird satellite imagery in detecting nitrogen status of potato canopies. Field Crops Research, 101, 96–103.
Wundram, D., & Loffler, J. (2007). Kite aerial photography in high mountain ecosystem research. Grazer Schriften der Geographie und Raumforschung, 43, 15–22.
Xiang, H., & Tian, L. (2011). Method for automatic georeferencing aerial remote sensing (RS) images from an unmanned aerial vehicle (UAV) platform. Biosystems Engineering, 108, 104–113.
Yang, C., Bradford, J. M., & Wiegand, C. L. (2001). Airborne multispectral imagery for mapping variable growing conditions and yields of cotton, grain sorghum, and corn. Transactions of the ASAE, 44, 1983–1994.
Yang, C. H., Everitt, J. H., & Bradford, J. M. (2006). Comparison of QuickBird satellite imagery and airborne imagery for mapping grain sorghum yield patterns. Precision Agriculture, 7, 33–44.
Zarco-Tejada, P. J., Gonzalez-Dugo, V., & Berni, J. A. J. (2012). Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sensing of Environment, 117, 322–337.
Zhang, J. H., Wang, K., Bailey, J. S., & Wang, R. C. (2006). Predicting nitrogen status of rice using multispectral data at canopy scale. Pedosphere, 16, 108–117.
Zhao, D. H., Huang, L. M., Li, J. L., & Qi, J. G. (2007). A comparative analysis of broadband and narrowband derived vegetation indices in predicting LAI and CCD of a cotton canopy. ISPRS Journal of Photogrammetry and Remote Sensing, 62, 25–33.
Zhou, G. (2009). Near real-time ortho rectification and mosaic of small UAV flow for time-critical event response. IEEE Transactions on Geoscience and Remote Sensing, 47, 739–747.
Acknowledgments
This research was supported by a Grant (project #920161) provided to John M. Kovacs from the Northern Ontario Heritage Fund Corporation of Canada.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, C., Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: a review. Precision Agric 13, 693–712 (2012). https://doi.org/10.1007/s11119-012-9274-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11119-012-9274-5