Abstract
The timing and mechanisms of the human occupation of the demanding high-altitude Tibetan Plateau environment are of great interest. Here, we report on our reinvestigations and dating of the Nwya Devu site, located nearly 4600 meters above sea level on the central Tibetan Plateau. A new microblade techno-complex was identified on a lower lake shore at this site, distinct from the previously reported blade tool assemblage. These two lithic assemblages were dated to 45.6±2.6 and 10.3±0.5 ka using optically stimulated luminescence and accelerator mass spectrometry 14C methods. They represent, respectively, the earliest known Paleolithic and microlithic sites on the interior Tibetan Plateau, indicating multiple occupation episodes of hunter-gatherers during the past 45 ka. Our studies reveal that relatively stable depositional conditions and a paleoenvironment characterized by a comparatively warm climate facilitated these multiple occupations at Nwya Devu. The contemporaneous occurrence of the Upper Paleolithic blade technology on the Tibetan Plateau and most of Eurasia between 50 and 40 ka indicates rapid, large-scale dispersals of humans that profoundly affected human demography on a large scale. Combining new archaeological evidence and previously reported genetic data, we conclude that the Tibetan Plateau provided a relatively stable habitat for Upper Paleolithic hunter-gatherers, which may have contributed to the complex and multiple-origin gene pool of present-day Tibetans.
Similar content being viewed by others
References
Aitken M J. 1985. Thermoluminescence Dating. London: Academic Press
An Z, Colman S M, Zhou W, Li X, Brown E T, Jull A J T, Cai Y, Huang Y, Lu X, Chang H, Song Y, Sun Y, Xu H, Liu W, Jin Z, Liu X, Cheng P, Liu Y, Ai L, Li X, Liu X, Yan L, Shi Z, Wang X, Wu F, Qiang X, Dong J, Lu F, Xu X. 2012. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Sci Rep, 2: 619
Anoikin A A, Pavlenok G D, Kharevich V M, Taimagambetov Z K, Shalagina A V, Gladyshev S A, Ulyanov V A, Duvanbekov R S, Shunkov M V. 2020. Ushbulak—A new stratified upper paleolithic site in Northeastern Kazakhstan. Arheol Ètnogr Antropol Evrazii, 47: 16–29
Bae C J, Douka K, Petraglia M D. 2017. On the origin of modern humans: Asian perspectives. Science, 358: eaai9067
Beall C M, Cavalleri G L, Deng L, Elston R C, Gao Y, Knight J, Li C, Li J C, Liang Y, McCormack M, Montgomery H E, Pan H, Robbins P A, Shianna K V, Tam S C, Tsering N, Veeramah K R, Wang W, Wangdui P, Weale M E, Xu Y, Xu Z, Yang L, Zaman M J, Zeng C, Zhang L, Zhang X, Zhaxi P, Zheng Y T. 2010. Natural selection on EPAS1 (HIF2α) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci USA, 107: 11459–11464
Beall C M. 2014. Adaptation to high altitude: Phenotypes and genotypes. Annu Rev Anthropol, 43: 251–272
Bergström A, Stringer C, Hajdinjak M, Scerri E M L, Skoglund P. 2021. Origins of modern human ancestry. Nature, 590: 229–237
Bigham AW. 2016. Genetics of human origin and evolution: High-altitude adaptations. Curr Opin Genet Dev, 41: 8–13
Better-Jensen L, Andersen C E, Duller GAT, Murray A S. 2003. Developments in radiation, stimulation and observation facilities in luminescence measurements. Radiat Meas, 37: 535–541
Brantingham P J, Gao X. 2006. Peopling of the northern Tibetan Plateau. World Archaeol, 38: 387–414
Bronk Ramsey C. 2008. Deposition models for chronological records. Quat Sci Rev, 27: 42–60
Bronk Ramsey C. 2009. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon, 51: 1023–1045
Bronk Ramsey C. 2017. Methods for summarizing radiocarbon datasets. Radiocarbon, 59: 1809–1833
Buylaert J P, Jain M, Murray A S, Thomsen K J, Thiel C, Sohbati R. 2012. A robust feldspar luminescence dating method for Middle and Lat Pleistocene sediments. Boreas, 41: 435–451
Chen F H, Dong G H, Zhang D J, Liu X Y, Jia X, An C B, Ma M M, Xie Y W, Barton L, Ren X Y, Zhao Z J, Wu X H, Jones M K. 2015. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P. Science, 347: 248–250
Chen F, Welker F, Shen C C, Bailey S E, Bergmann I, Davis S, Xia H, Wang H, Fischer R, Freidline S E, Yu T L, Skinner M M, Stelzer S, Dong G, Fu Q, Dong G, Wang J, Zhang D, Hublin J J. 2019. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature, 569: 409–412
Cheng H, Edwards R L, Sinha A, Spötl C, Yi L, Chen S, Kelly M, Kathayat G, Wang X, Li X, Kong X, Wang Y, Ning Y, Zhang H. 2016. The Asian monsoon over the past 640,000 years and ice age terminations. Nature, 534: 640–646
Choin J, Mendoza-Revilla J, Arauna L R, Cuadros-Espinoza S, Cassar O, Larena M, Ko A M S, Harmant C, Laurent R, Verdu P, Laval G, Boland A, Olaso R, Deleuze J F, Valentin F, Ko Y C, Jakobsson M, Gessain A, Excoffier L, Stoneking M, Patin E, Quintana-Murci L. 2021. Genomic insights into population history and biological adaptation in Oceania. Nature, 592: 583–589
Cunningham A C, Wallinga J. 2010. Selection of integration time intervals for quartz OSL decay curves. Quat Geochronol, 5: 657–666
Dortch J M, Owen L A, Caffee M W. 2013. Timing and climatic drivers for glaciation across semi-arid western Himalayan-Tibetan orogen. Quat Sci Rev, 78: 188–208
Duller G A T. 2008. Single-grain optical dating of Quaternary sediments: Why aliquot size matters in luminescence dating. Boreas, 37: 589–612
Duller G A T. 2003. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiat Meas, 37: 161–165
Durcan J A, King G E, Duller G A T. 2015. DRAC: Dose rate and age calculator for trapped charge dating. Quat Geochronol, 28: 54–61
Fan Q S, Lai Z P, Long H, Sun Y J, Liu X J. 2010. OSL chronology for lacustrine sediments recording high stands of Gahai Lake in Qaidam Basin, northeastern Qinghai-Tibetan Plateau. Quat Geochronol, 5: 223–227
Fewlass H, Talamo S, Wacker L, Kromer B, Tuna T, Fagault Y, Bard E, McPherron S P, Aldeias V, Maria R, Martisius N L, Paskulin L, Rezek Z, Sinet-Mathiot V, Sirakova S, Smith G M, Spasov R, Welker F, Sirakov N, Tsanova T, Hublin J J. 2020. A 14C chronology for the transition at Bacho Kiro Cave, Bulgaria. Nat Ecol Evol, 4: 794–801
Fu Q, Li H, Moorjani P, Jay F, Slepchenko S M, Bondarev A A, Johnson P L F, Aximu-Petri A, Prüfer K, de Filippo C, Meyer M, Zwyns N, Salazar-García D C, Kuzmin Y V, Keates S G, Kosintsev P A, Razhev D I, Richards M P, Peristov N V, Lachmann M, Douka K, Higham T F G, Slatkin M, Hublin J J, Reich D, Kelso J, Viola T B, Pääbo S. 2014. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature, 514: 445–449
Goebel T, Derevianko A P, Petrin V T. 1993. Dating the middle-to-upper-paleolithic transition at Kara-Bom. Curr Anthropol, 34: 452–458
Guérin G, Mercier N, Adamiec G. 2011. Dose-Rate Conversion Factors: Update. Ancient TL, 29: 5–8
Han J E, Cai M T, Shao Z G, Liu F, Zhang Q Q, Zhang S Q, Yu J, Li X L, Zhang Z G, Zhu D G. 2021. Vegetation and climate change since the late glacial period on the southern Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol, 572: 110403
He G, Wang M, Zou X, Chen P, Wang Z, Liu Y, Yao H, Wei L H, Tang R, Wang C C, Yeh H Y. 2021. Peopling history of the Tibetan Plateau and multiple waves of admixture of Tibetans inferred from both ancient and modern genome-wide data. Front Genet, 12: 725243
Hou J Z, D’Andrea W J, Liu Z H. 2012. The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau. Quat Sci Rev, 48: 67–79
Hou Y D, Long H, Shen J, Gao L. 2021. Holocene lake-level fluctuations of Selin Co on the central Tibetan plateau: Regulated by monsoonal precipitation or meltwater? Quat Sci Rev, 261: 106919
Hu H, Petousi N, Glusman G, Yu Y, Bohlender R, Tashi T, Downie J M, Roach J C, Cole A M, Lorenzo F R. 2017. Evolutionary history of Tibetans inferred from whole-genome sequencing. Plos Genet, 13: e1006675
Huang L, Chen Y W, Wu Y, Zeng T, Wei G J. 2022. Lake level changes of Nam Co since 25 ka as revealed by OSL dating of paleo-shorelines. Quat Geochronol, 70: 101274
Hublin J J, Sirakov N, Aldeias V, Bailey S, Bard E, Delvigne V, Endarova E, Fagault Y, Fewlass H, Hajdinjak M, Kromer B, Krumov I, Marreiros J, Martisius N L, Paskulin L, Sinet-Mathiot V, Meyer M, Pääbo S, Popov V, Rezek Z, Sirakova S, Skinner M M, Smith G M, Spasov R, Talamo S, Tuna T, Wacker L, Welker F, Wilcke A, Zahariev N, McPherron S P, Tsanova T. 2020. Initial Upper Palaeolithic homo sapiens from Bacho Kiro Cave, Bulgaria. Nature, 581: 299–302
Hudson A M, Quade J, Huth T E, Lei G L, Cheng H, Edwards L R, Olsen J W, Zhang H C. 2015. Lake level reconstruction for 12.8–2.3 ka of the Ngangla Ring Tso closed-basin lake system, Southwest Tibetan Plateau. Quat Res, 83: 66–79
Huerta-Sánchez E, Casey F P. 2015. Archaic inheritance: Supporting high-altitude life in Tibet. J Appl Physiol, 119: 1129–1134
Huerta-Sánchez E, Jin X, Asan X, Bianba Z, Peter B M, Vinckenbosch N, Liang Y, Yi X, He M, Somel M, Ni P, Wang B, Ou X, Huasang X, Luosang J, Cuo Z X P, Li K, Gao G, Yin Y, Wang W, Zhang X, Xu X, Yang H, Li Y, Wang J, Wang J, Nielsen R. 2014. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature, 512: 194–197
Jacobs Z, Li B, Shunkov M V, Kozlikin M B, Bolikhovskaya N S, Agadjanian A K, Uliyanov V A, Vasiliev S K, O’Gorman K, Derevianko A P, Roberts R G. 2019. Timing of archaic hominin occupation of Denisova Cave in southern Siberia. Nature, 565: 594–599
Jain M, Murray A S, Better-Jensen L. 2003. Characterisation of blue-light stimulated luminescence components in different quartz samples: Implications for dose measurement. Radiat Meas, 37: 441–449
Jeong C, Ozga AT, Witonsky D B, Malmström H, Edlund H, Hofman C A, Hagan R W, Jakobsson M, Lewis C M, Aldenderfer M S, Di Rienzo A, Warinner C. 2016. Long-term genetic stability and a high-altitude East Asian origin for the peoples of the high valleys of the Himalayan arc. Proc Natl Acad Sci USA, 113: 7485–7490
Kageyama M, Harrison S P, Kapsch M L, Lofverstrom M, Lora J M, Mikolajewicz U, Sherriff-Tadano S, Vadsaria T, Abe-Ouchi A, Bouttes N, Chandan D, Gregoire L J, Ivanovic R F, Izumi K, LeGrande A N, Lhardy F, Lohmann G, Morozova P A, Ohgaito R, Paul A, Peltier W R, Poulsen C J, Quiquet A, Roche D M, Shi X, Tierney J E, Valdes P J, Volodin E, Zhu J. 2021. The PMIP4 Last Glacial Maximum experiments: Preliminary results and comparison with the PMIP3 simulations. Clim Past, 17: 1065–1089
Kuhn S L, Zwyns N. 2014. Rethinking the initial Upper Paleolithic. Quat Int, 347: 29–38
Lai Z P, Mischke S, Madsen D. 2014. Paleoenvironmental implications of new OSL dates on the formation of the “Shell Bar” in the Qaidam Basin, northeastern Qinghai-Tibetan Plateau. J Paleolimnol, 51: 197–210
Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M. 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc Natl Acad Sci USA, 111: 15296–15303
Li F, Kuhn S L, Olsen J W, Chen F Y, Gao X. 2014. Disparate stone age technological evolution in North China. J Anthropol Res, 70: 35–67
Li Y C, Tian J Y, Liu F W, Yang B Y, Gu K S Y, Rahman Z U, Yang L Q, Chen F H, Dong G H, Kong Q P. 2019. Neolithic millet farmers contributed to the permanent settlement of the Tibetan Plateau by adopting barley agriculture. Natl Sci Rev, 6: 1005–1013
Lisiecki L E, Raymo M E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20: 2004PA001071
Liu C C, Witonsky D, Gosling A, Lee J H, Ringbauer H, Hagan R, Patel N, Stahl R, Novembre J, Aldenderfer M, Warinner C, Di Rienzo A, Jeong C. 2022. Ancient genomes from the Himalayas illuminate the genetic history of Tibetans and their Tibeto-Burman speaking neighbors. Nat Commun, 13: 1203
Liu X J, Cong L, Li X Z, Madsen D, Wang Y X, Liu Y G, Peng J. 2020. Climate conditions on the Tibetan Plateau during the last glacial maximum and implications for the survival of paleolithic foragers. Front Earth Sci, 8: 606051
Liu X J, Lai Z P, Madsen D B, Li G Q, Yu L P, Huang C, Chen F H. 2018. Late Quaternary Highstands of Qinghai Lake, Qinghai-Tibetan Plateau (in Chinese). Quat Sci, 38: 1166–1178
Lou H, Lu Y, Lu D, Fu R, Wang X, Feng Q, Wu S, Yang Y, Li S, Kang L, Guan Y, Hoh B P, Chung Y J, Jin L, Su B, Xu S. 2015. A 3.4-kb copy-number deletion near EPAS1 is significantly enriched in high-altitude Tibetans but absent from the denisovan sequence. Am J Hum Genet, 97: 54–66
Lu D, Lou H, Yuan K, Wang X, Wang Y, Zhang C, Lu Y, Yang X, Deng L, Zhou Y, Feng Q, Hu Y, Ding Q, Yang Y, Li S, Jin L, Guan Y, Su B, Kang L, Xu S. 2016. Ancestral origins and genetic history of Tibetan highlanders. Am J Hum Genet, 99: 580–594
Luo L, Lai Z P, Zheng W H, Xu Y T, Yu L P, Huang C, Tu H. 2021. OSL chronology of the siling Co paleolithic site in Central Tibetan Plateau. Front Earth Sci, 9: 699693
Madsen D B, Lai Z P, Sun Y J, Rhode D, Liu X J, Jeffrey Brantingham P. 2014. Late Quaternary Qaidam lake histories and implications for an MIS 3 “Greatest Lakes” period in northwest China. J Paleolimnol, 51: 161–177
Madsen D B, Perreault C, Rhode D, Sun Y, Yi M, Brunson K, Brantingham P J. 2017. Early foraging settlement of the Tibetan Plateau highlands. Archaeol Res Asia, 11: 15–26
Meng K, Shi X H, Wang E, Liu F. 2012. High-altitude salt lake elevation changes and glacial ablation in Central Tibet, 2000–2010. Chin Sci Bull, 57: 525–534
Meyer M C, Aldenderfer M S, Wang Z, Hoffmann D L, Dahl J A, Degering D, Haas W R, Schlütz F. 2017. Permanent human occupation of the central Tibetan Plateau in the early Holocene. Science, 355: 64–67
Moore L G, Charles S M, Julian C G. 2011. Humans at high altitude: Hypoxia and fetal growth. Respiratory Physiol Neurobiol, 178: 181–190
Murray A S, Wintle A G. 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat Meas, 32: 57–73
Murray A S, Wintle A G. 2003. The single aliquot regenerative dose protocol: Potential for improvements in reliability. Radiat Meas, 37: 377–381
NGICPM. 2004. High-resolution record of northern hemisphere climate extending into the last interglacial period. Nature, 431: 147–151
Olley J M, Pietsch T, Roberts R G. 2004. Optical dating of Holocene sediments from a variety of geomorphic settings using single grains of quartz. Geomorphology, 60: 337–358
Osman M B, Tierney J E, Zhu J, Tardif R, Hakim G J, King J, Poulsen C J. 2021. Globally resolved surface temperatures since the Last Glacial Maximum. Nature, 599: 239–244
Peng F, Lin S C, Patania I, Levchenko V, Guo J L, Wang H M, Gao X. 2020. A chronological model for the late paleolithic at Shuidonggou Locality 2, North China. PloS One, 15: e0232682
Petraglia M D, Haslam M, Fuller D Q, Boivin N, Clarkson C. 2010. Out of Africa: New hypotheses and evidence for the dispersal of Homo sapiens along the Indian Ocean rim. Ann Hum Biol, 37: 288–311
Pitulko V V, Tikhonov A N, Pavlova E Y, Nikolskiy P A, Kuper K E, Polozov R N. 2016. Early human presence in the Arctic: Evidence from 45,000-year-old mammoth remains. Science, 351: 260–263
Prescott J R, Hutton J T. 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiat Meas, 23: 497–500
Qi X, Cui C, Peng Y, Zhang X, Yang Z, Zhong H, Zhang H, Xiang K, Cao X, Wang Y, Ouzhuluobu Y, Basang Y, Ciwangsangbu Y, Bianba Y, Gonggalanzi Y, Wu T, Chen H, Shi H, Su B. 2013. Genetic evidence of paleolithic colonization and neolithic expansion of modern humans on the Tibetan Plateau. Mol Biol Evol, 30: 1761–1778
Qin F, Zhao Y, Cao X Y. 2022. Biome reconstruction on the Tibetan Plateau since the Last Glacial Maximum using a machine learning method. Sci China Earth Sci, 65: 518–535
Racimo F, Sankararaman S, Nielsen R, Huerta-Sánchez E. 2015. Evidence for archaic adaptive introgression in humans. Nat Rev Genet, 16: 359–371
Reich D, Green R E, Kircher M, Krause J, Patterson N, Durand E Y, Viola B, Briggs A W, Stenzel U, Johnson P L F, Maricic T, Good J M, Marques-Bonet T, Alkan C, Fu Q, Mallick S, Li H, Meyer M, Eichler E E, Stoneking M, Richards M, Talamo S, Shunkov M V, Derevianko A P, Hublin J J, Kelso J, Slatkin M, Pääbo S. 2010. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 468: 1053–1060
Reimer P J, Austin W E N, Bard E, Bayliss A, Blackwell P G, Bronk Ramsey C, Butzin M, Cheng H, Edwards R L, Friedrich M, Grootes P M, Guilderson T P, Hajdas I, Heaton T J, Hogg A G, Hughen K A, Kromer B, Manning S W, Muscheler R, Palmer J G, Pearson C, van der Plicht J, Reimer R W, Richards D A, Scott E M, Southon J R, Turney C S M, Wacker L, Adolphi F, Büntgen U, Capano M, Fahrni S M, Fogtmann-Schulz A, Friedrich R, Köhler P, Kudsk S, Miyake F, Olsen J, Reinig F, Sakamoto M, Sookdeo A, Talamo S. 2020. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon, 62: 725–757
Rhode D, Haizhou M, Madsen D B, Brantingham P J, Forman S L, Olsen J W. 2010. Paleoenvironmental and archaeological investigations at Qinghai Lake, western China: Geomorphic and chronometric evidence of lake level history. Quat Int, 218: 29–44
Roberts H M. 2006. Optical dating of coarse-silt sized quartz from loess: Evaluation of equivalent dose determinations and SAR procedural checks. Radiat Meas, 41: 923–929
Rodnight H. 2008. How Many Equivalent Dose Values Are Needed to Obtain a Reproducible Distribution. Ancient TL, 26: 3–9
Rybin E P, Paine C H, Khatsenovich A M, Tsedendorj B, Talamo S, Marchenko D V, Rendu W, Klementiev A M, Odsuren D, Gillam J C, Gunchinsuren B, Zwyns N. 2020. A new Upper Paleolithic occupation at the site of Tolbor-21 (Mongolia): Site formation, human behavior and implications for the regional sequence. Quat Int, 559: 133–149
Shi X H, Furlong K P, Kirby E, Meng K, Marrero S, Gosse J, Wang E C, Phillips F. 2017. Evaluating the size and extent of paleolakes in central Tibet during the late Pleistocene. Geophys Res Lett, 44: 5476–5485
Shi X H, Kirby E, Furlong K P, Meng K, Robinson R, Wang E. 2015. Crustal strength in central Tibet determined from Holocene shoreline deflection around Siling Co. Earth Planet Sci Lett, 423: 145–154
Simonson T S. 2015. Altitude adaptation: A glimpse through various lenses. High Altitude Med Biol, 16: 125–137
Smith B W, Rhodes E J. 1994. Charge movements in quartz and their relevance to optical dating. Radiat Meas, 23: 329–333
Svoboda J, Škrdla P. 1995. The bohunician technology. In: Dibble H L, Bar-Yosef O, eds. The Definition and Interpretation of Levallois Technology. Madison: Prehistory Press. 429–438
Thompson L G, Yao T D, Davis M E, Henderson K A, Mosley-Thompson E, Lin P N, Beer J, Synal H A, Cole-Dai J, Bolzan J F. 1997. Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core. Science, 276: 1821–1825
Tostevin G B. 2003. A Quest for antecedents: A comparison of the terminal middle palaeolithic and Early Upper Palaeolithic of the Levant. In: Goring-Morris A N, Belfer-Cohen A, eds. More Than Meets the Eye: Studies on Upper Palaeolithic Diversity in the near East. Oxford: Oxbow Books. 54–67
Wintle A G, Murray A S. 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiat Meas, 41: 369–391
Wu Z H, Tao Z X, Wu Z H, Zhou C J, Yan F H, Mai X S, Zhu D G. 2004. Palaeovegetation, palaeoclimate and lake-level chang since 120 ka Bp in Nam Co, Central Xizang. Acta Geol Sin, 78: 242–252
Yan D D, Wünnemann B. 2014. Late Quaternary water depth changes in Hala Lake, northeastern Tibetan Plateau, derived from ostracod assemblages and sediment properties in multiple sediment records. Quat Sci Rev, 95: 95–114
Yan Q, Owen L A, Zhang Z S, Jiang N X, Zhang R. 2020. Deciphering the evolution and forcing mechanisms of glaciation over the Himalayan-Tibetan orogen during the past 20,000 years. Earth Planet Sci Lett, 541: 116295
Yan Q, Owen L A, Zhang Z S, Wang H J, Wei T, Jiang N X, Zhang R. 2021. Divergent evolution of glaciation across high-mountain asia during the last four glacial-interglacial cycles. Geophys Res Lett, 48: e2021GL092411
Yi S W, Buylaert J P, Murray A S, Lu H Y, Thiel C, Zeng L. 2016. A detailed post- IR IRSL dating study of the Niuyangzigou loess site in northeastern China. Boreas, 45: 644–657
Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo Z X P, Pool J E, Xu X, Jiang H, Vinckenbosch N, Korneliussen T S, Zheng H, Liu T, He W, Li K, Luo R, Nie X, Wu H, Zhao M, Cao H, Zou J, Shan Y, Li S, Yang Q, Asan Q, Ni P, Tian G, Xu J, Liu X, Jiang T, Wu R, Zhou G, Tang M, Qin J, Wang T, Feng S, Li G, Huasang G, Luosang J, Wang W, Chen F, Wang Y, Zheng X, Li Z, Bianba Z, Yang G, Wang X, Tang S, Gao G, Chen Y, Luo Z, Gusang L, Cao Z, Zhang Q, Ouyang W, Ren X, Liang H, Zheng H, Huang Y, Li J, Bolund L, Kristiansen K, Li Y, Zhang Y, Zhang X, Li R, Li S, Yang H, Nielsen R, Wang J, Wang J. 2010. Sequencing of 50 human exomes reveals adaptation to high altitude. Science, 329: 75–78
Yu Y, He F, Vavrus S J, Johnson A, Wu H B, Zhang W C, Yin Q Z, Ge J Y, Deng C L, Petraglia M D, Guo Z T. 2023. Climatic factors and human population changes in Eurasia between the Last Glacial Maximum and the early Holocene. Glob Planet Change, 221: 104054
Yuan K, Ni X, Liu C, Pan Y, Deng L, Zhang R, Gao Y, Ge X, Liu J, Ma X, Lou H, Wu T, Xu S. 2021. Refining models of archaic admixture in Eurasia with ArchaicSeeker 2.0. Nat Commun, 12: 6232
Zhang D D, Bennett M R, Cheng H, Wang L, Zhang H, Reynolds S C, Zhang S, Wang X, Li T, Urban T, Pei Q, Wu Z, Zhang P, Liu C, Wang Y, Wang C, Zhang D, Lawrence Edwards R. 2021. Earliest parietal art: Hominin hand and foot traces from the middle Pleistocene of Tibet. Sci Bull, 66: 2506–2515
Zhang D D, Li S H. 2002. Optical dating of Tibetan human hand- and footprints: An implication for the palaeoenvironment of the last glaciation of the Tibetan Plateau. Geophys Res Lett, 29: 1072–1074
Zhang D, Xia H, Chen F, Li B, Slon V, Cheng T, Yang R, Jacobs Z, Dai Q, Massilani D, Shen X, Wang J, Feng X, Cao P, Yang M A, Yao J, Yang J, Madsen D B, Han Y, Ping W, Liu F, Perreault C, Chen X, Meyer M, Kelso J, Pääbo S, Fu Q. 2020. Denisovan DNA in Late Pleistocene sediments from Baishiya Karst Cave on the Tibetan Plateau. Science, 370: 584–587
Zhang P Q, Zhang X L, Li L H, He W, Dawa W, Jin Y S, Ge J Y, Zwyns N, Wang S J, Gao X. 2022. The peopling of the hinterland of the Tibetan Plateau during the late MIS 3. Sci Bull, 67: 2411–2415
Zhang S, Zhao H, Sheng Y W, Zhang J F, Zhang J J, Sun A J, Wang L B, Huang L X, Hou J Z, Chen F H. 2022. Mega-lakes in the northwestern Tibetan Plateau formed by melting glaciers during the last deglacial. Quat Sci Rev, 285: 107528
Zhang X J, Witt K E, Banuelos M M, Ko A, Yuan K, Xu S H, Nielsen R, Huerta-Sanchez E. 2021. The history and evolution of the Denisovan-EPAS1 haplotype in Tibetans. Proc Natl Acad Sci USA, 118: e2020803118
Zhang X L, Ha B B, Wang S J, Chen Z J, Ge J Y, Long H, He W, Da W, Nian X M, Yi M J, Zhou X Y, Zhang P Q, Jin Y S, Bar-Yosef O, Olsen J W, Gao X. 2018. The earliest human occupation of the high-altitude Tibetan Plateau 40 thousand to 30 thousand years ago. Science, 362: 1049–1051
Zhang X L, Jin Y S, He W, Yi M J, Xu X. 2020. A consideration of the spatiotemporal distribution of microblade industries on the Tibetan Plateau. Quat Int, 559: 165–173
Zhao Y, Tzedakis P C, Li Q, Qin F, Cui Q Y, Liang C, Birks H J B, Liu Y L, Zhang Z Y, Ge J Y, Zhao H, Felde V A, Deng C L, Cai M T, Li H, Ren W H, Wei H C, Yang H F, Zhang J W, Yu Z C, Guo Z T. 2020. Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years. Sci Adv, 6: eaay6193
Zhao Z M, Li R S. 2006. Evolutionary Characteristics of River and Lake Terraces in Different Areas of the Northern Qinghai-Tibet Plateau (in Chinese). Geol Bull China, 25: 221–225
Zhou J, Zhou W J, Dong G C, Hou Y Y, Xian F, Zhang L, Tang L, Zhao G Q, Fu Y C. 2020. Cosmogenic 10Be and 26Al exposure dating of Nam Co lake terraces since MIS 5, southern Tibetan Plateau. Quat Sci Rev, 231: 106175
Zwyns N, Paine C H, Tsedendorj B, Talamo S, Fitzsimmons K E, Gantumur A, Guunii L, Davakhuu O, Flas D, Dogandžić T, Doerschner N, Welker F, Gillam J C, Noyer J B, Bakhtiary R S, Allshouse A F, Smith K N, Khatsenovich A M, Rybin E P, Byambaa G, Hublin J J. 2019. The northern route for human dispersal in central and northeast Asia: New evidence from the site of Tolbor-16, Mongolia. Sci Rep, 9: 1
Acknowledgements
We thank Drs. Yan LI and Xuefeng SUN for their important input and discussions, and Hao LONG, Ruiping TANG, and Hao XIE for their invaluable assistance in the field and the lab, as well as Jiequn HUA for his assistance in creating the figures. This study was supported by the National Natural Science Foundation of China (Grant Nos. 41888101, 41977380 and 42072033), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB26000000 and XDA2004010102), the Second Tibetan Plateau Scientific Expedition and Research (Grant No. 2019QZKK0601), and the National Social Science Foundation of China (Grant No. 21@WTK001). Olsen’s participation was supported by the Chinese Academy of Sciences President’s International Fellowship Initiative Award (Grant No. 2018VCA0016) and the Je Tsongkhapa Endowment for Central and Inner Asian Archaeology at the University of Arizona.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest The authors declare that they have no conflict of interest.
Electronic Supplementary Material
Rights and permissions
About this article
Cite this article
Ge, J., Zhang, X., Wang, S. et al. New dating indicates intermittent human occupation of the Nwya Devu Paleolithic site on the high-altitude central Tibetan Plateau during the past 45,000 years. Sci. China Earth Sci. 67, 531–551 (2024). https://doi.org/10.1007/s11430-022-1225-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11430-022-1225-7