Abstract
Small intestinal fungal overgrowth (SIFO) is characterized by the presence of excessive number of fungal organisms in the small intestine associated with gastrointestinal (GI) symptoms. Candidiasis is known to cause GI symptoms particularly in immunocompromised patients or those receiving steroids or antibiotics. However, only recently, there is emerging literature that an overgrowth of fungus in the small intestine of non-immunocompromised subjects may cause unexplained GI symptoms. Two recent studies showed that 26 % (24/94) and 25.3 % (38/150) of a series of patients with unexplained GI symptoms had SIFO. The most common symptoms observed in these patients were belching, bloating, indigestion, nausea, diarrhea, and gas. The underlying mechanism(s) that predisposes to SIFO is unclear but small intestinal dysmotility and use of proton pump inhibitors has been implicated. However, further studies are needed; both to confirm these observations and to examine the clinical relevance of fungal overgrowth, both in healthy subjects and in patients with otherwise unexplained GI symptoms. Importantly, whether eradication or its treatment leads to resolution of symptoms remains unclear; at present, a 2–3-week course of antifungal therapy is recommended and may be effective in improving symptoms, but evidence for eradication is lacking.
Similar content being viewed by others
References
Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance
Ruhnke M. Epidemiology of Candida albicans infections and role of non-Candida-albicans yeasts. Curr Drug _targets. 2006;7(4):495–504.
Cimbaluk D, Scudiere J, Butsch J, Jakate S. Invasive candidal enterocolitis followed shortly by fatal cerebral hemorrhage in immunocompromised patients. J Clin Gastroenterol. 2005;39(9):795–7.
Micames CG, Bentley R, Onken J. Clinical challenges and images in GI. Invasive candidal enterocolitis. Gastroenterology. 2007;133(2):391, 731. doi:10.1053/j.gastro.2007.06.051.
Gupta TP, Ehrinpreis MN. Candida-associated diarrhea in hospitalized patients. Gastroenterology. 1990;98(3):780–5.
Greenspan D, Greenspan JS. HIV-related oral disease. Lancet. 1996;348(9029):729–33. doi:10.1016/S0140-6736(96)02308-2.
Gaitan-Cepeda LA, Sanchez-Vargas O, Castillo N. Prevalence of oral candidiasis in HIV/AIDS children in highly active antiretroviral therapy-era. A literature analysis. Int J STD AIDS. 2014. doi:10.1177/0956462414548906.
Prescott RJ, Harris M, Banerjee SS. Fungal infections of the small and large intestine. J Clin Pathol. 1992;45(9):806–11.
Schulze J, Sonnenborn U. Yeasts in the gut: from commensals to infectious agents. Dtsch Arztebl Int. 2009;106(51–52):837–42. doi:10.3238/arztebl.2009.0837.
Cohen R, Roth FJ, Delgado E, Ahearn DG, Kalser MH. Fungal flora of the normal human small and large intestine. N Engl J Med. 1969;280(12):638–41. doi:10.1056/NEJM196903202801204.
Jacobs C, Coss Adame E, Attaluri A, Valestin J, Rao SS. Dysmotility and proton pump inhibitor use are independent risk factors for small intestinal bacterial and/or fungal overgrowth. Aliment Pharmacol Ther. 2013;37(11):1103–11. doi:10.1111/apt.12304. This is the first study investigating the prevalence of SIFO in patients with persistent GI symptoms, evaluating the symptoms of patients and showing that dysmotility and proton pomp use are independent risk factors for SIFO/SIBO. This study also showed that symptoms are poor predictors of SIFO and testing is essential.
Erdogan A, Lee Y, Sifuentes H, Rao SS. Small intestinal fungal overgrowth (SIFO): a cause of gastrointestinal symptoms. Gastroenterology. 2014;146(5):S-358.
Yamashita K, Ohara M, Kojima T, Nishimura R, Ogawa T, Hino T, et al. Prevalence of drug-resistant opportunistic microorganisms in oral cavity after treatment for oral cancer. J Oral Sci. 2013;55(2):145–55.
Kane JG, Chretien JH, Garagusi VF. Diarrhoea caused by Candida. Lancet. 1976;1(7955):335–6.
Friedman M, Ramsay DB, Borum ML. An unusual case report of small bowel Candida overgrowth as a cause of diarrhea and review of the literature. Dig Dis Sci. 2007;52(3):679–80. doi:10.1007/s10620-006-9604-4.
Bodey GP. Candidiasis in cancer patients. Am J Med. 1984;77(4D):13–9.
Middleton SJ, Coley A, Hunter JO. The role of faecal Candida albicans in the pathogenesis of food-intolerant irritable bowel syndrome. Postgrad Med J. 1992;68(800):453–4.
Forbes D, Ee L, Camer-Pesci P, Ward PB. Faecal candida and diarrhoea. Arch Dis Child. 2001;84(4):328–31.
Florescu DF, Islam KM, Grant W, Mercer DF, Langnas A, Botha J, et al. Incidence and outcome of fungal infections in pediatric small bowel transplant recipients. Transpl Infect Dis Off J Transplant Soc. 2010;12(6):497–504. doi:10.1111/j.1399-3062.2010.00542.x.
Hube B. From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Curr Opin Microbiol. 2004;7(4):336–41. doi:10.1016/j.mib.2004.06.003.
Netea MG, Brown GD, Kullberg BJ, Gow NA. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol. 2008;6(1):67–78. doi:10.1038/nrmicro1815.
Blanco JL, Garcia ME. Immune response to fungal infections. Vet Immunol Immunopathol. 2008;125(1–2):47–70. doi:10.1016/j.vetimm.2008.04.020.
Vilanova M, Correia A. Host defense mechanisms in invasive candidiasis originating in the GI tract. Expert Rev Anti-Infect Ther. 2008;6(4):441–5. doi:10.1586/14787210.6.4.441.
Fidel Jr PL. History and update on host defense against vaginal candidiasis. Am J Reprod Immunol. 2007;57(1):2–12. doi:10.1111/j.1600-0897.2006.00450.x.
Polonelli L, Casadevall A, Han Y, Bernardis F, Kirkland TN, Matthews RC, et al. The efficacy of acquired humoral and cellular immunity in the prevention and therapy of experimental fungal infections. Med Mycol. 2000;38 Suppl 1:281–92.
Traynor TR, Huffnagle GB. Role of chemokines in fungal infections. Med Mycol. 2001;39(1):41–50.
Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science. 2012;336(6086):1314–7. doi:10.1126/science.1221789. This study found that fungi in colonic tissue are abundant, closely located with commensal bacteria, and commensal fungi are recognized by Dectin-1. The authors also showed that Dectin-1 deficiency leads to increased susceptibility to colitis. Although 7/20 of most common fungi were found in mice food, this only represented for 1.5 % of fungi in the intestine indicating that those species mostly found in the gut are native to the gut. Furthermore, treatment of colitis with fluconazole reduced weight loss and caused milder histological disease findings indicating the effect of fungi on gut health.
Wang ZK, Yang YS, Stefka AT, Sun G, Peng LH. Review article: fungal microbiota and digestive diseases. Aliment Pharmacol Ther. 2014;39(8):751–66. doi:10.1111/apt.12665.
Shirtliff ME, Peters BM, Jabra-Rizk MA. Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol Lett. 2009;299(1):1–8. doi:10.1111/j.1574-6968.2009.01668.x.
Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev. 2011;75(4):583–609. doi:10.1128/MMBR. 00020-11.
Fitzsimmons N, Berry DR. Inhibition of Candida albicans by Lactobacillus acidophilus: evidence for the involvement of a peroxidase system. Microbios. 1994;80(323):125–33.
Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends Microbiol. 2001;9(7):327–35.
Franke A, Balschun T, Sina C, Ellinghaus D, Hasler R, Mayr G, et al. Genome-wide association study for ulcerative colitis identifies risk loci at 7q22 and 22q13 (IL17REL). Nat Genet. 2010;42(4):292–4. doi:10.1038/ng.553.
McGovern DP, Gardet A, Torkvist L, Goyette P, Essers J, Taylor KD, et al. Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nat Genet. 2010;42(4):332–7. doi:10.1038/ng.549.
Seow CH, Stempak JM, Xu W, Lan H, Griffiths AM, Greenberg GR, et al. Novel anti-glycan antibodies related to inflammatory bowel disease diagnosis and phenotype. Am J Gastroenterol. 2009;104(6):1426–34. doi:10.1038/ajg.2009.79.
Joossens S, Reinisch W, Vermeire S, Sendid B, Poulain D, Peeters M, et al. The value of serologic markers in indeterminate colitis: a prospective follow-up study. Gastroenterology. 2002;122(5):1242–7.
Van der Graaf CA, Netea MG, Morre SA, Den Heijer M, Verweij PE, Van der Meer JW, et al. Toll-like receptor 4 Asp299Gly/Thr399Ile polymorphisms are a risk factor for Candida bloodstream infection. Eur Cytokine Netw. 2006;17(1):29–34.
Devlin SM, Yang H, Ippoliti A, Taylor KD, Landers CJ, Su X, et al. NOD2 variants and antibody response to microbial antigens in Crohn’s disease patients and their unaffected relatives. Gastroenterology. 2007;132(2):576–86. doi:10.1053/j.gastro.2006.11.013.
Rubinstein E, Mark Z, Haspel J, Ben-Ari G, Dreznik Z, Mirelman D, et al. Antibacterial activity of the pancreatic fluid. Gastroenterology. 1985;88(4):927–32.
Gong YB, Zheng JL, Jin B, Zhuo DX, Huang ZQ, Qi H, et al. Particular Candida albicans strains in the digestive tract of dyspeptic patients, identified by multilocus sequence typing. PLoS ONE. 2012;7(4):e35311. doi:10.1371/journal.pone.0035311. This study shows that Candida albicans colonizes oral flora as well as gastric flora of dyspeptic patients; overall C. albicans was isolated from 97.8 % of the Candida-positive subjects from oral/gastric samples in the dyspeptic group, but from only 56.3 % in the healthy group (P, 0.001). This study suggests that Candida albicans can survive in gastric acidity.
Banerjee P, Kaur R, Uppal B. Study of fungal isolates in patients with chronic diarrhea at a tertiary care hospital in north India. J Mycol Med. 2013;23(1):21–6. doi:10.1016/j.mycmed.2012.12.002. This study was carried out in patients suffering from chronic diarrhea and aimed to find the rate of isolation of yeast from stool and also antifungal susceptibility of opportunistic pathogens. Of total, 26.7 % of stool specimens grew fungal organisms and most were found to be sensitive to antifungal agents including fluconazole. This study shows that opportunistic yeast may cause symptoms like chronic diarrhea.
Rex JH, Rinaldi MG, Pfaller MA. Resistance of Candida species to fluconazole. Antimicrob Agents Chemother. 1995;39(1):1–8.
Pfaller MA, Jones RN, Messer SA, Edmond MB, Wenzel RP. National surveillance of nosocomial blood stream infection due to species of Candida other than Candida albicans: frequency of occurrence and antifungal susceptibility in the SCOPE Program. SCOPE Participant Group. Surveillance and Control of Pathogens of Epidemiologic. Diagn Microbiol Infect Dis. 1998;30(2):121–9.
Zonios DI, Bennett JE. Update on azole antifungals. Semin Respir Crit Care Med. 2008;29(2):198–210. doi:10.1055/s-2008-1063858.
Phillips P, Shafran S, Garber G, Rotstein C, Smaill F, Fong I, et al. Multicenter randomized trial of fluconazole versus amphotericin B for treatment of candidemia in non-neutropenic patients. Canadian Candidemia Study Group. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. 1997;16(5):337–45.
Rex JH, Pappas PG, Karchmer AW, Sobel J, Edwards JE, Hadley S, et al. A randomized and blinded multicenter trial of high-dose fluconazole plus placebo versus fluconazole plus amphotericin B as therapy for candidemia and its consequences in nonneutropenic subjects. Clin Infect Dis Off Publ Infect Dis Soc Am. 2003;36(10):1221–8. doi:10.1086/374850.
Jiang L, Yong X, Li R, Peng Y, Liu W, Qin Q, et al. Dynamic analysis of oral Candida carriage, distribution, and antifungal susceptibility in HIV-infected patients during the first year of highly active antiretroviral therapy in Guangxi, China. J Oral Pathol Med Off Publ Int Assoc Oral Pathol Am Acad Oral Pathol. 2014. doi:10.1111/jop.12192.
Pfaller MA, Jones RN, Doern GV, Fluit AC, Verhoef J, Sader HS, et al. International surveillance of blood stream infections due to Candida species in the European SENTRY Program: species distribution and antifungal susceptibility including the investigational triazole and echinocandin agents. SENTRY Participant Group (Europe). Diagn Microbiol Infect Dis. 1999;35(1):19–25.
Denning DW. Echinocandin antifungal drugs. Lancet. 2003;362(9390):1142–51. doi:10.1016/S0140-6736(03)14472-8.
Bennett JE. Echinocandins for candidemia in adults without neutropenia. N Engl J Med. 2006;355(11):1154–9. doi:10.1056/NEJMct060052.
Johansen HK, Gotzsche PC. Amphotericin B lipid soluble formulations versus amphotericin B in cancer patients with neutropenia. Cochrane Database Syst Rev. 2014;9, CD000969. doi:10.1002/14651858.CD000969.pub2.
Gotzsche PC, Johansen HK. Nystatin prophylaxis and treatment in severely immunodepressed patients. Cochrane Database Syst Rev. 2014;9, CD002033. doi:10.1002/14651858.CD002033.pub2.
Chandrasekar P. Management of invasive fungal infections: a role for polyenes. J Antimicrob Chemother. 2011;66(3):457–65. doi:10.1093/jac/dkq479.
Maroszynska M, Kunicka-Styczynska A, Rajkowska K, Maroszynska I. Antibiotics sensitivity of Candida clinical and food-borne isolates. Acta Biochim Pol. 2013;60(4):719–24.
Pappas PG, Kauffman CA, Andes D, Benjamin Jr DK, Calandra TF, Edwards Jr JE, et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis Off Publ Infect Dis Soc Am. 2009;48(5):503–35. doi:10.1086/596757. This infectious disease society guideline provides comprehensive information on the various drugs, their mechanism of action and profile and indication for treatment of candidiasis.
Acknowledgments
We acknowledge the technical and secretarial assistance of Ms. Helen Smith.
Compliance with Ethics Guidelines
ᅟ
Conflict of Interest
Askin Erdogan and Satish S.C. Rao declare that they have no conflict of interest.
Human and Animal Rights and Informed Consent
This article does not contain any studies with human or animal subjects performed by any of the authors. Among cited articles where one of the authors of the current report were authors, local Institutional Review Board approval was obtained and maintained for studies where human (or animal) subjects research was performed.
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is part of the Topical Collection on Neurogastroenterology and Motility Disorders of the Gastrointestinal Tract
Rights and permissions
About this article
Cite this article
Erdogan, A., Rao, S.S.C. Small Intestinal Fungal Overgrowth. Curr Gastroenterol Rep 17, 16 (2015). https://doi.org/10.1007/s11894-015-0436-2
Published:
DOI: https://doi.org/10.1007/s11894-015-0436-2