Abstract
Let M be a set of incidence matrices of symmetric (v,k,λ)-designs and G a group of mappings M→ M. We give a sufficient condition for the matrix W⊗ M, where Mε M and W is a balanced generalized weighing matrix over G, to be the incidence matrix of a larger symmetric design. This condition is then applied to the designs corresponding to McFarland and Spence difference sets, and it results in four families of symmetric (v,k,λ )-designs with the following parameters k and λ (m and d are positive integers, p and q are prime powers): (i) \(k = q^{2m-1} p^d ,\lambda = (q-1)q^{2m-2} p^{d-1} ,q= \frac{p^{d+1} - 1}{p-1}\); (ii) \(k = \frac{(q^{2m-1} p^d - 1)p^d}{(p-1)(p^d + 1)},\lambda = \frac{{(q^{2m - 2} p^{2d} - 1)p^d }}{{(p - 1)(p^d + 1)}},q = p^{d + 1} + p - 1\); (iii) \(k = 3^d q^{2m - 1} ,\lambda = \frac{{3^d (3^d + 1)q^{2m - 2} }} {2},q = \frac{{3^{d + 1} + 1}} {2} \); (iv) \(k = \frac{{3^d (3^d q^{2m - 1} - 1)}} {{2(3^d - 1)}},\lambda = \frac{{3^d (3^{2d} q^{2m - 2} - 1)}} {{2(3^d - 1)}},q = 3^{d + 1} - 2 \).
Similar content being viewed by others
References
T. Beth, D. Jungnickel, and H. Lenz, Design Theory, B.I. Wissenschaftverlag, Mannheim, 1985, Cambridge Univ. Press, Cambridge, UK (1986).
A. E. Brouwer, An infinite series of symmetric designs, Math. Centrum Amsterdam Report, ZW 136/80 (1983).
C. J. Colbourn and J. H. Dinitz (eds.), The CRC Handbook of Combinatorial Designs, CRC Press (1996).
J. D. Fanning, A family of symmetric designs, Discrete Mathematics, Vol. 146 (1995) pp. 307–312.
Y. J. Ionin, Symmetric subdesigns of symmetric designs, Journal of Combinatorial Mathematics and Combinatorial Computing(forthcoming).
D. Jungnickel, Difference sets, Contemporary Design Theory: A Collection of Surveys(J. H. Dinitz and D. R. Stinson, eds.), John Wiley & Sons, New York (1992) pp. 241–324.
D. Jungnickel and A. Pott, A new class of symmetric (v, kλ)-designs, Designs, Codes, and Cryptography, Vol. 4 (1994) pp. 319–325.
D. P. Rajkundlia, Some techniques for constructing infinite families of BIBDs, Discrete Math., Vol. 44 (1983) pp. 61–96.
Rights and permissions
About this article
Cite this article
Ionin, Y.J. A Technique for Constructing Symmetric Designs. Designs, Codes and Cryptography 14, 147–158 (1998). https://doi.org/10.1023/A:1008288012934
Issue Date:
DOI: https://doi.org/10.1023/A:1008288012934