Abstract
Codes \({\mathcal{C}}(m,r)\) of length 2m over {1, -1} are defined as null spaces of certain submatrices of Hadamard matrices. It is shown that the codewords of \({\mathcal{C}}(m,r)\) all have an rth order spectral null at zero frequency. Establishing the connection between \({\mathcal{C}}(m,r)\) and the parity-check matrix of Reed-Muller codes, the minimum distance of \({\mathcal{C}}(m,r)\) is obtained along with upper bounds on the redundancy of \({\mathcal{C}}(m,r)\). An efficient algorithm is presented for encoding unconstrained binary sequences into \({\mathcal{C}}(m,r)\).
Similar content being viewed by others
References
S. Al-Bassam and B. Bose, On balanced codes, IEEE Trans. Inform. Theory, Vol. IT-36 (1990) pp. 406–408.
N. Alon, E. E. Bergmann, D. Coppersmith and A. M. Odlyzko, Balancing sets of vectors, IEEE Trans. Inform. Theory, Vol. IT-34 (1988) pp. 128–130.
A. M. Barg, Incomplete sums, DC-constrained codes, and codes that maintain synchronization, Designs, Codes, and Cryptography, Vol. 3 (1993) pp. 105–116.
A. M. Barg and S. N. Lytsin, DC-constrained codes from Hadamard matrices, IEEE Trans. Inform. Theory, Vol. IT-37 (1991) pp. 801–807.
M. Blaum, A (16,9,6,5,4) error-correcting DC-free block code, IEEE Trans. Inform. Theory, Vol. IT-34 (1988) pp. 138–141.
E. Eleftheriou and R. Cideciyan, On codes satisfying Mth order running digital sum constraints, IEEE Trans. Inform. Theory, Vol. IT-37 (1991) pp. 1294–1313.
T. Etzion, Constructions of error-correcting DC-free block codes, IEEE Trans. Inform. Theory, Vol. IT-36 (1990) pp. 899–905.
H. C. Ferreira, Lower bounds on the minimum Hamming distance achievable with runlength constrained or DC-free block codes and the synthesis of a (16,8), Dmin D 4, DC-free block code, IEEE Trans. Magn., Vol. MAG-20 (1984) pp. 881–883.
W. H. Gottschalk and G. A. Hedlung, Topological Dynamics, Colloquium Publications of the AMS, American Math. Society, Providence, Rhode Island, 36 (1955).
H. D. L. Hollmann and K. A. Schouhamer Immink, Performance of efficient balanced codes, IEEE Trans. Inform. Theory, Vol. IT-37 (1991) pp. 913–918.
L. K. Hua, Introduction to Number Theory, Springer, Berlin (1982).
R. Karabed and P. H. Siegel, Matched spectral-null codes for partial-response channels, IEEE Trans. Inform. Theory, Vol. IT-37 (1991) pp. 818–855.
D. E. Knuth, Efficient balanced codes, IEEE Trans. Inform. Theory, Vol. IT-32 (1986) pp. 51–53.
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam (1977).
C. M. Monti and G. L. Pierobon, Codes with a multiple spectral null at zero frequency, IEEE Trans. Inform. Theory, Vol. IT-35 (1989) pp. 463–472.
R. M. Roth and G. M. Benedek, Interpolation and approximation of sparse multivariate polynomials over GF.2/, SIAM J. Comput., Vol. 20 (1991) pp. 291–314.
R. M. Roth, P. H. Siegel and A. Vardy, High-order spectral-null codes: Constructions and bounds, IEEE Trans. Inform. Theory, Vol. IT-40 (1994) pp. 1826–1840.
K. A. Schouhamer Immink, Coding Techniques for Digital Recorders, Prentice-Hall, London (1991).
K. A. Schouhamer Immink and G. Beenker, Binary transmission codes with higher order spectral zeros at zero frequency, IEEE Trans. Inform. Theory, Vol. IT-33 (1987) pp. 452–454.
H. van Tilborg and M. Blaum, On error-correcting balanced codes, IEEE Trans. Inform. Theory, Vol. IT-35 (1989) pp. 1091–1095.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Roth, R.M. Spectral-Null Codes and Null Spaces of Hadamard Submatrices. Designs, Codes and Cryptography 9, 177–191 (1996). https://doi.org/10.1023/A:1018018114369
Issue Date:
DOI: https://doi.org/10.1023/A:1018018114369