Abstract
Wnt expression patterns during mammary development support a role for Wnts in breast development and in mammary epithelial responses to systemic hormones. The deregulation of Wnt signaling also plays a role in breast cancer. Activation of the Wnt signaling pathway is a major feature of several human neoplasias and appears to lead to the cytosolic stabilization of a transcriptional co-factor, β-catenin. This co-activator can then regulate transcription from a number of _target genes including the cellular oncogenes cyclin D1 and c-myc. This review will summarize the current state of knowledge of Wnt signal transduction in a range of model systems and will then address the role of Wnts and Wnt signaling in mammary development and cancer.
Similar content being viewed by others
REFERENCES
M. J. Smalley and T. C. Dale (1999). Wnt signaling in mammalian development and tumorigenesis. Cancer Metastasis Rev. 18:215–230.
R. Nusse, A. Brown, J. Papkoff, P. Scambler, G. Shackleford, A. McMahon, R. Moon, and H. Varmus (1991). Anew nomenclature for int-1 and related genes: The Wnt gene family. Cell 64:231.
C. Brisken, A. Heineman, T. Chavarria, B. Elenbaas, J. Tan, S. K. Dey, J. A. McMahon, A. P. McMahon, and R. A. Weinberg (2000). Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev. 14:650–654.
S. Lejeune, E. L. Huguet, A. Hamby, R. Poulsom, and A. L. Harris (1995). Wnt5a cloning, expression and upregulation in human primary breast cancers. Clinical Cancer Res. 1:215–222.
T. C. Dale, S. J. Weber-Hall, K. Smith, E. L. Huguet, H. Jayatalike, B. A. Gusterson, G. Shuttleworth, M. O'Hare, and A. L. Harris (1996). Compartment switching of WNT-2 expression in human breast tumors. Cancer Res. 56:4320–4323.
P. Polakis (1997). The adenomatous polyposis coli (APC) tumor suppressor. Biochim. Biophys. Acta Rev. on Cancer 1332:F127–F147.
P. Polakis (1999). The oncogenic activation of β-catenin. Current Opin. Gene. Dev. 9:15–21.
T. C. Dale (1998). Signal transduction by the Wnt family of ligands. Biochem. J. 329:209–223.
A. Wodarz and R. Nusse (1998). Mechanisms of Wnt signaling in development. Ann. Rev. Cell Dev. Biol. 14:59–88.
M. Kuhl, L. C. Sheldahl, M. Park, J. R. Miller, and R. T. Moon (2000). The Wnt/Ca2+ pathway: A new vertebrate Wnt signaling pathway takes shape. Trends in Genetics 16:279–283.
J. C. Hsieh, A. Rattner, P. M. Smallwood, and J. Nathans (1999). Biochemical characterization of Wnt-frizzled interactions using a soluble, biologically active vertebrate Wnt protein. Proc. Natl. Acad. Sci. U.S.A. 96:3546–3551.
P. Bhanot, M. Brink, C. H. Samos, J.-C. Hsieh, Y. Wang, J. P. Macke, D. Andrew, J. Nathans, and R. Nusse (1996). A new member of the frizzled family from Drosophila functions as a wingless receptor. Nature 282:225–230.
Y. Wang, J. P. Macke, B. S. Abella, K. Andreasson, P. Worley, D. J. Gilbert, N. G. Copeland, N. A. Jenkins, and J. Nathans (1996). A large family of putative transmembrane receptors homologous to the product of the Drosophila tissue polarity gene frizzled. J. Biol. Chem. 271:4468–4476.
Y. K. Wang, C.H. Samos, R. Peoples, J.-L. A. Perez, R. Nusse, and U. Francke (1997). A novel human homologue of the Drosophila frizzled wnt receptor gene binds wingless protein and is in the Williams syndrome deletion at 7q11.23. Human Mol. Genet. 6:465–472.
X. He, J.-P. Saint-Jeannet, Y. Wang, J. Nathans, I. Dawid, and H. Varmus (1997). A member of the frizzled protein family mediating axis induction by Wnt-5A. Science 275:1652–1654.
M. A. Torres, S.-J.A. Yang, S.M. Purcell, A. A. DeMarais, L.L. McGrew, and R. T. Moon (1996). Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5A class and by a dominant negative cadherin in early Xenopus development. J. Cell Biol. 133:1123–1137.
P. W. Finch, X. He, M. J. Kelley, A. Uren, R. P. Schaudies, N. C. Popescu, S. Rudikoff, S. A. Aaronson, H. E. Varmus, and J. S. Rubin (1997). Purification and molecular cloning of a secreted, Frizzled-related antagonist of Wnt action. Proc. Natl. Acad. Sci. U.S.A. 94:6770–6775.
A. Rattner, J.-C. Hsieh, P. M. Smallwood, D. J. Gilbert, N. G. Copeland, N. A. Jenkins, and J. Nathans (1997). A family of secreted oncoproteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors. Proc. Natl. Acad. Sci. U.S.A. 94:2859–2863.
S. Wang, M. Krinks, K. Lin, F. P. Luyten, and M. J. Moos (1997). Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell 88:757–766.
S. Wang, M. Krinks, and M. Moos, Jr. (1997). Frzb-1, an antagonist of Wnt-1 and Wnt-8, does not block signaling by Wnts-3A,-5A, or-11. Biochem. Biophys. Res. Commun. 236:502–504.
H. S. Melkonyan, W.C. Chang, J. P. Shapiro, M. Mahadevappa, P. A. Fitzpatrick, M.C. Kiefer, L.D. Tomei, and S. R. Umansky (1997). SARPs: A family of secreted apoptosis-related proteins. Proc. Natl. Acad. Sci. U.S.A. 94:13636–13641.
J. T. Chang, N. Esumi, K. Moore, Y. Li, S. Zhang, C. Chew, B. Goodman, A. Rattner, S. Moody, G. Stetten, P. A. Campochiaro, and D. J. Zack (1999). Cloning and characterization of a secreted frizzled-related protein that is expressed by the retinal pigment epithelium. Hum. Mol. Genet. 8:575–583.
E. Hu, Y. Zhu, T. Fredrickson, M. Barnes, D. Kelsell, L. Beeley, and D. Brooks (1998). Tissue restricted expression of two human Frzbs in preadipocytes and pancreas. Biochem. Biophys. Res. Commun. 247:287–293.
S. Piccolo, E. Agius, L. Leyns, S. Bhattacharyya, H. Grunz, T. Bouwmeester, and E. M. De Robertis (1999). The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397:707–710.
J. C. Hsieh, L. Kodjabachian, M. L. Rebbert, A. Rattner, P.M. Smallwood, C. H. Samos, R. Nusse, I.B. Dawid, and J. Nathans (1999). Anew secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398:431–436.
A. Glinka, W. Wu, H. Delius, A. P. Monaghan, C. Blumenstock, and C. Niehrs (1998). Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391:357–362.
M. Mlodzik (1999). Planar polarity in the Drosophila eye: A multifaceted view of signaling specificity and cross-talk. EMBO J. 18:6873–6879.
M. Boutros and M. Mlodzik (1999). Dishevelled: At the crossroads of divergent intracellular signaling pathways.Mech.Dev. 83:27–37.
D. C. Slusarski, J. Yang-Snyder, W. B. Busa, and R. T. Moon (1997). Modulation of embryonic intracellular Ca2+ signaling by Wnt-5A. Dev. Biol. 182:114–120.
D. C. Slusarski, V. G. Corces, and R. T. Moon (1997). Interaction of Wnt and a frizzled homologue triggers G-proteinlinked phosphatidylinositol signaling. Nature 390:410–413.
M. Kuhl, L. C. Sheldahl, C. C. Malbon, and R. T. Moon (2000). Ca2+/Calmodulin-dependent protein kinase II is stimulated by Wnt and frizzled homologues and promotes ventral cell fates in Xenopus. J. Biol. Chem. 275:12701–12711.
C. M. Chen and G. Struhl (1999). Wingless transduction by the frizzled and frizzled2 proteins of Drosophila. Development 126:5441–5452.
M. Boutros, J. Mihaly, T. Bouwmeester, and M. Mlodzik (2000). Signaling specificity by frizzled receptors in Drosophila. Science 288:1825–1828.
X. Lin and N. Perrimon (1999). Dally cooperates with Drosophila frizzled 2 to transduce wingless signaling. Nature 400:281–284.
H. Nakato, T. A. Futch, and S. B. Selleck (1995). The division abnormally delayed (dally) gene: A putative integral membrane proteoglycan required for cell division patterning during postembryonic development of the nervous system in Drosophila. Development 121:3687–3702.
M. Tsuda, K. Kamimura, H. Nakato, M. Archer, W. Staatz, B. Fox, M. Humphrey, S. Olson, T. Futch, V. Kaluza, E. Siegfried, L. Stam, and S. B. Selleck (1999). The cell-surface proteoglycan dally regulates wingless signaling in Drosophila. Nature 400:276–280.
X. Liu, T. Liu, D. C. Slusarski, J. Yang-Snyder, C. C. Malbon, R. T. Moon, and H. Wang (1999). Activation of a frizzled-2/β-adrenergic receptor chimera promotes Wnt signaling and differentiation of mouse F9 teratocarcinoma cells via Galpho and Galphat. Proc. Natl. Acad. Sci. U.S.A. 96:14383–14388.
T. Liu, X. Liu, H. Wang, R. T. Moon, and C. C. Malbon (1999). Activation of rat frizzled-1 promotes Wnt signaling and differentiation of mouse F9 teratocarcinoma cells via pathways that require Gα(q) and Gα(o) function. J. Biol. Chem. 274:33539–33544.
C. Wu, Q. Zeng, K. J. Blumer, and A. J. Muslin (2000). RGS proteins inhibit XWnt-8 signaling in Xenopus embryonic development. Development 127:2773–2784.
J. D. Axelrod, J. R. Miller, J. M. Shulman, R. T. Moon, and N. Perrimon (1998). Differential recruitment of dishevelled provides signaling specificity in the planar cell polarity and wingless signaling pathways. Genes Dev. 12:2610–2622.
J. Klingensmith, R. Nusse, and N. Perrimon (1994). The Drosophila segment polarity gene dishevelled encodes a novel protein required for response to the wingless signal. Genes Dev. 8:118–130.
D. J. Sussman, J. Klingensmith, P. Salinas, P. S. Adams, R. Nusse, and N. Perrimon (1994). Isolation and characterization of a mouse homolog of the Drosophila segment polarity gene dishevelled. Dev. Biol. 166:73–86.
H. Theisen, J. Purcell, M. Bennett, D. Kansagara, A. Syed, and J. L. Marsh (1994). Dishevelled is required during wingless signaling to establish both cell polarity and cell identity. Development 120:347–360.
M. Boutros, N. Paricio, D. I. Strutt, and M. Mlodzik (1998). Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling. Cell 94:109–118.
S. Kishida, H. Yamamoto, S. Hino, S. Ikeda, M. Kishida, and A. Kikuchi (1999). DIXdomains of Dvl and axin are necessary for protein interactions and their ability to regulate β-catenin stability. Mol. Cell. Biol. 19:4414–4422.
L. Li, H. Yuan, W. Xie, J. Mao, A. M. Caruso, A. McMahon, D. J. Sussman, and D. Wu (1999). Dishevelled proteins lead to two signaling pathways: Regulation of LEF-1 and c-Jun Nterminal kinase in mammalian cells. J. Biol. Chem. 274:129–134.
T. Moriguchi, K. Kawachi, S. Kamakura, N. Masuyama, H. Yamanaka, K. Matsumoto, A. Kikuchi, and E. Nishida (1999). Distinct domains of mouse dishevelled are responsible for the c-Jun N-terminal kinase/stress-activated protein kinase activation and the axis formation in vertebrates. J. Biol. Chem. 274:30957–30962.
U. Rothbacher, M. N. Laurent, M. A. Deardorff, P. S. Klein, K.W. Cho, and S. E. Fraser (2000). Dishevelled phosphorylation, subcellular localization and multimerization regulate its role in early embryogenesis. EMBO J. 19:1010–1022.
S. Yanagawa, F. van Leeuwen, A. Wodarz, J. Klingensmith, and R. Nusse (1995). The Dishevelled protein is modified by wingless signaling in Drosophila. Genes Dev. 9:1087–1097.
W. Hsu, L. Zeng, and F. Costantini (1999). Identification of a domain of axin that binds to the serine/threonine protein phosphatase 2A and a self binding domain. J. Biol. Chem. 273:3439–3445.
M. J. Hart, R. de los Santos, I. N. Albert, B. Rubinfeld, and P. Polakis (1998). Downregulation of β-catenin by human Axin and its association with the APC tumor suppressor, β-catenin and GSK3-β. Curr. Biol. 8:573–581.
S. Ikeda, S. Kishida, H. Yamamoto, H. Murai, S. Koyama, and A. Kikuchi (1998). Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J. 17:1371–1384.
S. Kishida, H. Yamamoto, S. Ikeda, M. Kishida, I. Sakamoto, S. Koyama, and A. Kikuchi (1998). Axin, a negative regulator of the wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of β-catenin. J. Biol. Chem. 273:10823–10826.
H. Aberle, A. Bauer, J. Stappert, A. Kispert, and R. Kemler (1997). β-catenin is a _target for the ubiquitin-proteasome pathway. EMBO J. 16:3797–3804.
C. Liu, Y. Kato, Z. Zhang, V. M. Do, B. A. Yankner, and X. He (1999). β-Trcp couples β-catenin phosphorylationdegradation and regulates Xenopus axis formation. Proc. Natl. Acad. Sci. U.S.A. 96:6273–6278.
K. Orford, C. Crockett, J. P. Jensen, A. M. Weissman, and S.W. Byers (1997). Serine phosphorylation-regulated ubiquitination and degradation of β-catenin. J. Biol. Chem. 272:24735–24738.
F. Fagotto, E. Jho, L. Zeng, T. Kurth, T. Joos, C. Kaufmann, and F. Costantini (1999). Domains of axin involved in proteinprotein interactions,Wntpathway inhibition, and intracellular localization. J. Cell Biol. 145:741–756.
M. J. Smalley, E. Sara, H. Paterson, S. Naylor, D. Cook, H. Jayatilake, L.G. Fryer, L. Hutchinson, M. J. Fry, and T.C. Dale (1999). Interaction of axin and Dvl-2 proteins regulates Dvl-2-stimulated TCF-dependent transcription. EMBO J. 18:2823–2835.
A. Salic, E. Lee, L. Mayer, and M.W. Kirschner (2000). Control of β-catenin stability: Reconstitution of the cytoplasmic steps of the wnt pathway in Xenopus egg extracts. Mol. Cell 5:523–532.
J. M. Seeling, J. R. Miller, R. Gil, R. T. Moon, R. White, and D. M. Virshup (1999). Regulation of β-catenin signaling by the B56 subunit of protein phosphatase 2A. Science 283:2089–2091.
J. Behrens, B. A. Jerchow, M. Wurtele, J. Grimm, C. Asbrand, R. Wirtz, M. Kuhl, D. Wedlich, and W. Birchmeier (1998). Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK3β. Science 280:596–599.
H. Yamamoto, S. Kishida, T. Uochi, S. Ikeda, S. Koyama, M. Asashima, and A. Kikuchi (1998). Axil, a member of the Axin family, interacts with both glycogen synthase kinase 3β and β-catenin and inhibits axis formation of Xenopus embryos. Mol. Cell. Biol. 18:2867–2875.
M. Mai, C. Qian, A. Yokomizo, D. I. Smith, and W. Liu (1999). Cloning of the human homolog of conductin (AXIN2), a gene mapping to chromosome 17q23-q24. Genomics 55:341–344.
R. T. Moonand J. R. Miller (1997). The APC tumor suppressor protein in development and cancer. Trends Genet. 13:256–258.
J. H. van Es, C. Kirkpatrick, M. van de Wetering, M. Molenaar, A. Miles, J. Kuipers, O. Destree, M. Peifer, and H. Clevers (1999). Identification of APC2, a homologue of the adenomatous polyposis coli tumor suppressor. Curr. Biol. 9:105–108.
S. Hayashi, B. Rubinfeld, B. Souza, P. Polakis, and E. Wieschaus (1997). A Drosophila homolog of the tumor suppressor gene adenomatous polyposis coli down-regulates β-catenin but its zygotic expression is not essential for the regulation of Armadillo. Proc. Natl. Acad. Sci. U.S.A. 94:242–247.
B. M. McCartney, H. A. Dierick, C. Kirkpatrick, M. M. Moline, A. Baas, M. Peifer, and A. Bejsovec (1999). Drosophila APC2 is a cytoskeletally-associated protein that regulates wingless signaling in the embryonic epidermis. J. Cell Biol. 146:1303–1318.
X. Yu, L. Waltzer, and M. Bienz (1999). A new Drosophila APC homologue associated with adhesive zones of epithelial cells. Nat. Cell Biol. 1:144–151.
S. Munemitsu, B. Souza, O. Muller, I. Albert, B. Rubinfeld, and P. Polakis (1994). The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res. 54:3676–3681.
I. S. Nathke, C. L. Adams, P. Polakis, J. H. Sellin, and W. J. Nelson (1996). The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J. Cell Biol. 134:165–179.
K. L. Neufeld and R. L. White (1997). Nuclear and cytoplasmic localizations of the adenomatous polyposis coli protein. Proc. Natl. Acad. Sci. U.S.A. 94:3034–3039.
E. Porfiri, B. Rubinfeld, I. Albert, K. Hovanes, M. Waterman, and P. Polakis (1997). Induction of a β-catenin-LEF-1 complex by wnt-1 and transforming mutants of β-catenin. Oncogene 15:2833–2839.
J. S. Lee, A. Ishimoto, and S. Yanagawa (1999). Characterization of mouse dishevelled (Dvl) proteins in Wnt/Wingless signaling pathway. J. Biol. Chem. 274:21464–21470.
S. A. Steitz, M. Tsang, and D. J. Sussman (1996). Wnt-mediated relocalization of dishevelled proteins. In Vitro Cell. Dev. Biol. Anim. 32:441–445.
D. Cook, M. J. Fry, R. Sumatipala, K. Hughes, J. R. Woodgett, and T. C. Dale (1996). Wingless inactivates glycogen synthase kinase-3 via an intracellular signaling pathway which involves a protein kinase C. EMBO J. 15:4526–4536.
I. Dominguez and J. B. Green (2000). Dorsal downregulation of GSK3β by a non-wnt-like mechanism is an early molecular consequence of cortical rotation in early Xenopus embryos. Development 127:861–868.
L. Li, H. Yuan, C. D. Weaver, J. Mao, G. H. Farr, 3rd, D. J. Sussman, J. Jonkers, D. Kimelman, and D. Wu (1999). Axin and Frat1 interact with Dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. EMBO J. 18:4233–4240.
K. Willert, S. Shibamoto, and R. Nusse (1999). Wnt-induced dephosphorylation of Axin releases β-catenin from the Axin complex. Genes Dev. 13:1768–1773.
K. Willert, M. Brink, A. Wodarz, H. Varmus, and R. Nusse (1997). Casein kinase 2 associates with and phosphorylates dishevelled. EMBO J. 16:3089–3096.
C. Sakanaka, P. Leong, L. Xu, S. D. Harrison, and L. T. Williams (1999). Casein kinase iepsilon in the wnt pathway: Regulation of β-catenin function. Proc. Natl. Acad. Sci.U.S.A. 96:12548–12552.
J. M. Peters, R.M. McKay, J. P. McKay, and J. M. Graff (1999). Casein kinase I transduces Wnt signals. Nature 401:345–350.
F. Fagotto, U. Gluck, and B. M. Gumbiner (1998). Nuclear localization signal-independent and importin/karyopherinindependent nuclear import of β-catenin. Curr. Biol. 8:181–190.
J. Behrens, J. P. Von Kries, M. Kühl, L. Bruhn, D. Wedlich, R. Grosschedl, and W. Birchmeier (1996). Functional interaction of β-catenin with the transcription factor Lef-1. Nature 382:638–642.
J. Riese, X. Yu, A. Munnerlyn, S. Eresh, S. C. Hsu, R. Grosschedl, and M. Bienz (1997). LEF-1, a nuclear factor coordinating signaling inputs from wingless and decapentaplegic. Cell 88:777–787.
J. J. Love, X. Li, D. A. Case, K. Giese, R. Grosschedl, and P. E. Wright (1995). Structural basis for DNA bending by the architectural transcription factor LEF-1. Nature 376:791–795.
M. Bienz (1998). TCF: Transcriptional activator or repressor? Curr. Opin. Cell Biol. 10:366–372.
R. A. Cavallo, R. T. Cox, M. M. Moline, J. Roose, G. A. Polevoy, H. Clevers, M. Peifer, and A. Bejsovec (1998). Drosophila Tcf and Groucho interact to repress wingless signaling activity. Nature 395:604–608.
A. L. Fisher and M. Caudy (1998). Groucho proteins: Transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and invertebrates. Genes Dev. 12:1931–1940.
D. Levanon, R. E. Goldstein, Y. Bernstein, H. Tang, D. Goldenberg, S. Stifani, Z. Paroush, and Y. Groner (1998). Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. Proc. Natl. Acad. Sci. U.S.A. 95:11590–11595.
J. Roose, M. Molenaar, J. Peterson, J. Hurenkamp, H. Brantjes, P. Moerer, M. van de Wetering, O. Destree, and H. Clevers (1998). The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 395:608–612.
A. Hecht, C. M. Litterst, O. Huber, and R. Kemler (1999). Functional characterization of multiple transactivating elements in β-catenin, some of which interact with the TATA-binding protein in vitro. J. Biol. Chem. 274:18017–18025.
A. Hecht, K. Vleminckx, M. P. Stemmler, F. van Roy, and R. Kemler (2000). The p300/CBP acetyltransferases function as transcriptional coactivators of β-catenin in vertebrates. [in process citation] EMBO J. 19:1839–1850.
K. I. Takemaru and R. T. Moon (2000). The transcriptional coactivator CBP interacts with β-catenin to activate gene expression. J. Cell Biol. 149:249–254.
L. Waltzer and M. Bienz (1998). Drosophila CBP represses the transcription factor TCF to antagonizeWingless signaling. Nature 395:521–525.
A. M. Zorn, G. D. Barish, B. O. Williams, P. Lavender, M. W. Klymkovsky, and H. E. Varmus (1999). Regulation of Wnt signaling by Sox proteins: XSox17alpha/β and XSox3 physically interact with β-catenin. Mol. Cell 4:487–498.
P. N. Adler (1992). The genetic control of tissue polarity in Drosophila. Bioessays 14:735–741.
D. I. Strutt, U. Weber, and M. Mlodzik (1997). The role of RhoA in tissue polarity and frizzled signaling. Nature 387:292–295.
L. Zheng, J. Zhang, and R. W. Carthew (1995). Frizzled regulates mirror-symmetric pattern formation in the Drosophila eye. Development 121:3045–3055.
D. Gubb (1993). Genes controlling cellular polarity in Drosophila. Development [Supplement] pp. 269–277.
N. Paricio, F. Feiguin, M. Boutros, S. Eaton, and M. Mlodzik (1999). The Drosophila STE20-like kinase misshapen is required downstream of the frizzled receptor in planar polarity signaling. EMBO J. 18:4669–4678.
C. Heisenberg, M. Tada, G. Rauch, L. Saude, M. L. Concha, R. Geisler, D. L. Stemple, J. C. Smith, and S. W. Wilson (2000). Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405:76–81.
S. Eaton (1997). Planar cell polarity in Drosophila and vertebrate epithelia. Curr. Opin. Cell Biol. 9:860–866.
S. Shibamoto, K. Higano, R. Takada, F. Ito, M. Takeichi, and S. Takada (1998). Cytoskeletal reorganization by soluble Wnt-3a protein signaling. Genes Cells 3:659–670.
Y. Zhang, S. Y. Neo, X. Wang, J. Han, and S. C. Lin (1999). Axin forms a complex with MEKK1 and activates c-Jun NH(2)-terminal kinase/stress-activated protein kinase through domains distinct from Wnt signaling. J. Biol. Chem. 274:35247–35254.
J. M. Bradbury, P. A. W. Edwards, C. C. Niemeyer, and T. C. Dale (1995). Wnt-4 expression induces a pregnancy-like growth pattern in reconstituted mammary glands in virgin mice. Dev. Biol. 170:553–563.
C. Van Genderen, R. M. Okamura, I. Farinas, R. Quo, T. G. Parslow, L. Bruhn, and R. Grosscheld (1994). Development of several organs that require inductive epithelialmesenchymal interactions is impaired in LEF-1 deficient mice. Genes Dev. 8:2691–2703.
T. Sakakura (1991). New aspects of stroma-parenchyma relations in mammary gland differentiation. Int. Rev. Cytol. 125:165–201.
I. Thesleff, A. Vaahtokari, P. Kettunen, and T. Aberg (1995). Epithelial-mesenchymal signaling during tooth development. Connect Tissue Res. 32:9–15.
G. W. Robinson, A. B. C. Karpf, and K. Kratochwil (1999). Regulation of mammary gland development by tissue interaction. J. Mam. Gland Bio. Neoplasia 4:9–19.
B. A. Parr and A. P. McMahon (1998). Sexually dimorphic development of the mammalian reproductive tract requires Wnt-7a. Nature 395:707–710.
V. Fantl, G. Stamp, A. Andrews, I. Rosewell, and C. Dickson (1995). Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev. 9:2364–2372.
V. Fantl, P. A. Edwards, J. H. Steel, B. K. Vonderhaar, and C. Dickson (1999). Impaired mammary gland development in cycl-1(-/-) mice during pregnancy and lactation is epithelial cell autonomous. Dev. Biol. 212:1–11.
M. Shtutman, J. Zhurinsky, I. Simcha, C. Albanese, M. D'Amico, R. Pestell, and A. Ben-Ze'ev (1999). The cyclin D1 gene is a _target of the β-catenin/LEF-1 pathway. Proc. Natl. Acad. Sci. U.S.A. 96:5522–5527.
J. P. Lydon, F. J. DeMayo, C. R. Funk, S. K. Mani, A. R. Hughes, C.A. Montgomery, Jr., G. Shyamala, O. M. Conneely, and B. W. O'Malley (1995). Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 9:2266–2278.
J. P. Lydon, F. J. DeMayo, O.M. Conneely, and B.W. O'Malley (1996). Reproductive phenotpes of the progesterone receptor null mutant mouse. J. Steroid Biochem. Mol. Biol. 56:67–77.
R. A. Rimerman, A. Gellert-Randleman, and J. A. Diehl (2000). Wnt1 and MEK1 cooperate to promote cyclin D1 accumulation and cellular transformation. J. Biol. Chem. 275:14736–14742.
J. A. Diehl, M.G. Cheng, M. F. Roussel, and C. J. Sherr (1998). Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 12:3499–3511.
S. J. Weber-Hall, D. Phippard, C. Niemeyer, and T. C. Dale (1994). Developmental and hormonal regulation of Wnt gene expression in the mouse mammary gland. Differentiation 57:205–214.
B. J. Gavin and A. P. McMahon (1992). Differential regulation of the Wnt gene family during pregnancy and lactation suggests a role in postnatal development of the mammary gland. Mol. Cell. Biol. 12:2418–2423.
E. L. Huguet, J. A. McMahon, A. P. McMahon, R. Bicknell, and A. L. Harris (1994). Differential expression of human Wnt genes 2,3,4 and 7B in human breast cell lines and normal and disease states of human breast tissue. Cancer Res. 54:2615–2621.
J. T. Emerman and A. W. Vogl (1986). Cell size and shape changes in the myoepithelium of the mammary gland during differentiation. Anat. Record 216:405–415.
C. E. Rocheleau, W. D. Down, R. Lin, C. Wittmann, Y. Bei, Y.-H. Cha, M. Ali, J. R. Priess, and C. Mello (1997). Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 90:707–716.
R. Nusse, H. Theunissen, E. Wagenaar, F. Rijsewijk, A. Gennissen, A. Otte, E. Schuuring, and O. A. van (1990). The Wnt-1 (int-1) oncogene promoter and its mechanism of activation by insertion of proviral DNA of the mouse mammary tumor virus. Mol. Cell. Biol. 10:4170–4179.
P. A. W. Edwards, S. E. Hiby, J. Papkoff, and J. M. Bradbury (1992). Hyperplasia of mouse mammary epithelium induced by expression of the Wnt-1 (int-1) oncogene in reconstituted mammary gland. Oncogene 7:2041–2051.
S. Naylor, M. J. Smalley, D. Robertson, B. A. Gusterson, P. A.W. Edwards, and T.C. Dale (2000). Retroviral expression of Wnt-1 and Wnt-7b produces different effects in mouse mammary epithelium. J. Cell Sci. 113:2129–2138.
L. A. Donehower, L. A. Godley, C. M. Aldaz, R. Pyle, Y. P. Shi, D. Pinkel, J. Gray, A. Bradley, D. Medina, and H. E. Varmus (1995). Deficiency of p53 accelerates mammary tumorigenesis in Wnt-1 transgenic mice and promotes chromosomal instability. Genes Dev. 9:882–895.
H. Kwan, V. Pecenka, A. Tsukamoto, T. G. Parslow, R. Guzman, T. P. Lin, W. J. Muller, F. S. Lee, P. Leder, and H. E. Varmus (1992). Transgenes expressing the Wnt-1 and int-2 proto-oncogenes cooperate during mammary carcinogenesis in doubly transgenic mice. Mol. Cell. Biol. 12:147–154.
G. M. Shackleford, C. A. MacArthur, H. C. Kwan, and H. E. Varmus (1993). Mouse mammary tumor virus infection accelerates mammary carcinogenesis in Wnt-1 transgenic mice by insertional activation of int-2/Fgf-3 and hst/Fgf-4. Proc. Natl. Acad. Sci. U.S.A. 90:740–744.
C. A. MacArthur, D. B. Shankar, and G. M. Shackleford (1995). Fgf-8, activated by proviral insertion, cooperates with the Wnt-1 transgene in murine mammary tumorigenesis. J. Virol. 69:2501–2507.
H. Roelink, E. Wagenaar, and R. Nusse (1992). Amplifi-cation and proviral activation of several Wnt genes during progression and clonal variation of mouse mammary tumors. Oncogene 7:487–492.
T. D. Bui, J. Rankin, K. Smith, E. L. Huguet, S. Ruben, T. Stachan, A. L. Harris, and S. Lindsay (1997). A novel human Wnt gene, WNT10B, maps to 12q13 and is expressed in human breast carcinomas. Oncogene 14:1249–1253.
T. F. Lane and P. Leder (1997). Wnt-10B directs hypermorphic development and transformation in mammary glands of male and female mice. Oncogene 15:2133–2144.
D. J. Olson and D. M. Gibo (1998). Antisense wnt-5a mimics Wnt-1-mediated C57MG mammary epithelial cell transformation. Exp. Cell Res. 241:134–141.
F. Ugolini, J. Adelaide, E. Charafe-Jauffet, C. Nguyen, J. Jacquemier, B. Jordan, D. Birnbaum, and M. Pebusque (1999). Differential expression assay of chromosome arm 8p genes identifies frizzled related protein (FRP1/FRZB) and fibroblast growth factor receptor 1 (FGFR1) as candidate breast cancer genes. Oncogene 18:1903–1910.
G. Abu-Jawdeh, N. Comella, Y. Tomita, L. F. Brown, K. Tognazzi, S. Y. Sokol., and O. Kocher (1999). Differential expression of frpHE:A novel human stomal protein of the secreted frizzled gene family, during the endometrial cycle and malignancy. Lab. Invest. 79:439–447.
T.D. Bui, D. R. Beier, M. Jonssen, K. Smith, S. M. Dorrington, L. Kaklamanis, L. Kearney, R. Regan, D. J. Sussman, and A. L. Harris (1997). cDNA cloning of a human dishevelled DVL-3 gene, mapping to 3q27, and expression in human breast and colon carcinomas. Biochem. Biophys. Res. Comm. 239:510–516.
S. Satoh, Y. Daigo, Y. Furukawa, T. Kato, N. Miwa, T. Nishiwaki, T. Kawasoe, H. Ishiguro, M. Fujita, T. Tokino, Y. Sasaki, S. Imaoka, M. Murata, T. Shimano, Y. Yamaoka, and Y. Nakamura (2000). AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virusmediated transfer of AXIN1. Nature Genetics 24:245–250.
N. Harada, Y. Tamai, T. Ishikawa, B. Sauer, K. Takaku, M. Oshima, and M. M. Taketo (1999). Intestinal polyposis in mice with a dominant stable mutation of the β-catenin gene. EMBO J. 18:5931–5942.
M. H. Wong, B. Rubinfeld, and J. I. Gordon (1998). Effects of forced expression of an NH2-terminal truncated β-catenin on mouse intestinal epithelial homeostasis. J. Cell Biol. 141:765–777.
S. Y. Lin, W. Xia, J. C. Wang, K. Y. Kwong, B. Spohn, Y. Wen, R. G. Pestell, and M. C. Hung (2000). β-catenin, a novel prognostic marker for breast cancer: Its roles in cyclin D1 expression and cancer progression. Proc. Natl. Acad. Sci. U.S.A. 97:4262–4266.
M. Jonsson, A. Borg, M. Nilbert, and T. Andersson (2000). Involvement of adenomatous polyposis coli (APC)/β-catenin signaling in human breast cancer. Eur. J. Cancer 36:242–248.
S. Candidus, P. Bischoff, K. E. Becker, and H. Hofler (1996). No evidence for mutations in the α- and β-catenin genes in human gastric and breast carcinomas. Cancer Res. 56:49–52.
A. P. Moser, E. M. Mattes, W. F. Dove, M. J. Lindstrom, J. D. Haag, and M. N. Gould (1993). Apc (min), a mutation in the murine Apc gene, predisposes to mammary carcinomas and focal alveolar hyperplasias. Proc. Natl. Acad. Sci. U.S.A. 90:8977–8981.
T. Sorlie, I. Bukholm, and A. L. Borresen-Dale (1998). Truncating somatic mutation in exon 15 of the APC gene is a rare event in human breast carcinomas. Human Mutations 12:215.
M. Glukhova, V. Koteliansky, X. Sastre, and J. P. Thiery (1995). Adhesion systems in normal breast and in invasive breast carcinoma. Amer. J. Pathol. 146:706–716.
W. E. Pierceall, A. S. Woodard, J. S. Morrow, D. Rimm, and E. R. Fearon (1995). Frequent alterations in E-cadherin and α- and β-catenin expression in human breast cancer cell lines. Oncogene 11:1319–1326.
B. Ranscht (1994). Cadherins and catenins: Interactions and functions in embryonic development. Curr. Opin. Cell Biol. 6:740–746.
H. C. Crawford, B. M. Fingleton, L. A. Rudolph-Owen, K. J. Goss, B. Rubinfeld, P. Polakis, and L. M. Matrisian (1999). The metalloproteinase matrilysin is a _target of β-catenin transactivation in intestinal tumors. Oncogene 18:2883–2891.
D. M. Barnes and C. E. Gillett (1998). Cyclin D1 in breast cancer. Breast Cancer Res. Treat. 52:1–15.
T. C. Wang, R. D. Cardiff, L. Zukerberg, E. Lees, A. Arnold, and E. V. Schmidt (1994). Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369:669–671.
T. C. He, A. B. Sparks, C. Rago, H. Hermeking, L. Zawel, L. T. da Costa, P. J. Morin, B. Vogelstein, and K.W. Kinzler (1998). Identification of c-MYC as a _target of the APC pathway. Science 281:1509–1512.
T. A. Stewart, P. K. Pattengale, and P. Leder (1984). Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38:627–637.
A. Leder, P. K. Pattengale, A. Kuo, T. A. Stewart, and P. Leder (1986). Consequences of widespread deregulation of the c-myc gene in transgenic mice: Multiple neoplasms and normal development. Cell 45:485–495.
C. Schoenenberger, A. Andres, B. Groner, M. van der Valk, M. LeMeur and P. Gerlinger (1988). _targeted c-myc expression in mammary glands of transgenic mice induces mammary tumors with constitutive milk protein gene transcription. EMBO J. 7:169–175.
L. Xu, R. B. Corcoran, J. W. Welsh, D. Pennica, and A. J. Levine (2000). WISP-1 is a Wnt-1-and β-catenin-responsive oncogene. Genes Dev. 14:585–595.
D. Pennica, T. A. Swanson, J. W. Welsh, M. A. Roy, D. A. Lawrence, J. Lee, J. Brush, L. A. Taneyhill, B. Deuel, M. Lew, C. Watanabe, R. L. Cohen, M. F. Melhem, G. G. Finley, P. Quirke, A.D. Goddard, K. J. Hillan, A. L. Gurney, D. Botstein, and A. J. Levine (1998). WISP genes are members of the connective tissue growth factor family that are up-regulated in wnt-1-transformed cells and aberrantly expressed in human colon tumors. Proc. Natl. Acad. Sci. U.S.A. 95:14717–14722.
J. Roose, G. Huls, M. van Beest, P. Moerer, K. van der Horn, R. Goldschmeding, T. Logtenberg, and H. Clevers (1999). Synergy between tumor suppressor APC and the β-catenin-tcf4 _target tcf1. Science 285:1923–1926.
M. Nishita, M. K. Hashimoto, S. Ogata, M. N. Laurent, N. Ueno, H. Shibuya, and K. W. Cho (2000). Interaction between Wnt and TGF-β signaling pathways during formation of Spemann's organizer. Nature 403:781–785.
C. M. Hedgepeth, M. A. Deardorff, K. Rankin, and P. S. Klein (1999). Regulation of glycogen synthase kinase 3β and downstream Wnt signaling by Axin. Mol. Cell. Biol. 19:7147–7157.
C. Yost, G. H. Farr, III, S. B. Pierce, D. M. Ferkey, M. Mingzi Chen, and D. Kimelman (1998). GBP, and Inhibitor of GSK-3, is implicated in Xenopus development and oncogenesis. Cell 93:1031–1041.
H. Yamamoto, S. Kishida, M. Kishida, S. Ikeda, S. Takada, and A. Kikuchi (1999). Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3β regulates its stability. J. Biol. Chem. 274:10681–10684.
M. Webster, E. Rozycka, E. Sara, E. Davis, M. J. Smalley, N. Young, T. C. Dale and R. Wooster (2000). Sequence variants of the axin gene in breast, colon and other cancers: An an analysis of mutations that interfere with GSK-3 binding. Genes Chr. Cancer 28:443–453.