Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synthetic peptides as nuclear localization signals

Abstract

The nuclear envelope defines a compartment boundary which is penetrated by pores that mediate a remarkable transport process. Precursor RNAs are retained in the nucleus, while processed messenger RNA1, transfer RNA2 and ribosomal subunits3 are transported to the cytoplasm. Proteins destined for the nucleus become localized soon after synthesis and again following mitosis, while cytoplasmic proteins are excluded4. The process is highly specific: a single base change in vertebrate initiator tRNAMet (tRNAimet) reduces the rate of export 20-fold5; a point mutation within the simian virus 40 (SV40) large-T antigen, converting Lys 128 to Thr (ref. 6) or Asn (ref. 7), prevents import. Lys 128 lies within a short ‘signal’ sequence which, when fused to large non-nuclear proteins, causes their accumulation in nuclei6–8. Regions of other eukaryotic proteins also seem to contain nuclear localization signals, although a single consensus sequence has not emerged9–13. We report here that a synthetic peptide containing 10 residues of large-T antigen sequence serves as a nuclear localization signal when cross-linked to bovine serum albumin (BSA) or immunoglobulin G (IgG) and microinjected in Xenopus oocytes. Substitution of Thr at the position of Lys 128 in this peptide renders it six- to sevenfold less effective. The uptake of peptide-linked BSA is saturable, and the rate is diminished by co-injection of free peptide. These findings are indicative of a receptor-mediated uptake process. With the use of anti-peptide antibodies, a family of proteins is revealed in nuclear but not cytoplasmic extracts of human lymphocytes which contain large-T antigen-like sequences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wickens, M. P. & Gurdon, J. B. J. molec. Biol. 163, 1–26 (1983).

    Article  CAS  Google Scholar 

  2. Melton, D. A., DeRobertis, E. M. & Cortese, R. Nature 284, 143–148 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Warner, J. R., Tushinski, R. J. & Wejksnora, P. J. in Ribosomes: Structure, Function and Genetics (eds Chambiss, G. et al.) 889–902 (University Park Press, Baltimore, 1980).

    Google Scholar 

  4. Bonner, W. M. in The Cell Nucleus Vol. 6C (ed. Busch, H.) 97–148 (Academic, New York, 1978).

    Google Scholar 

  5. Zasloff, M. Proc. natn. Acad. Sci. U.S.A. 80, 6436–6440 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Kalderon, D., Richardson, W. D., Markham, A. F. & Smith, A. E. Nature 311, 33–38 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Lanford, R. E. & Butel, J. S. Cell 37, 801–813 (1984).

    Article  CAS  Google Scholar 

  8. Kalderon, D., Roberts, B. L., Richardson, W. D. & Smith, A. E. Cell 39, 499–509 (1984).

    Article  CAS  Google Scholar 

  9. Dingwall, C., Sharnick, S. V. & Laskey, R. A. Cell 30, 449–458 (1982).

    Article  CAS  Google Scholar 

  10. Silver, P. A., Keegan, L. P. & Ptashne, M. Proc. natn. Acad. Sci. U.S.A. 81, 5951–5955 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Hall, M. N., Hereford, L. & Hershowitz, I. Cell 36, 1057–1065 (1984).

    Article  CAS  Google Scholar 

  12. Moreland, R. B., Nam, H. G., Hereford, L. M. & Fried, H. M. Proc. natn. Acad. Sci. U.S.A. 82, 6561–6565 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Davey, J., Dimmock, N. J. & Colman, A. Cell 40, 667–675 (1985).

    Article  CAS  Google Scholar 

  14. Van Helden, P., Strickland, W. N., Brand, W. F. & Von Hoist, C. Biochim. biophys. Acta 533, 278–281 (1978).

    Article  CAS  Google Scholar 

  15. Michaeli, T. & Prives, C. Molec. Cell. Biol. 5, 2019–2028 (1985).

    Article  CAS  Google Scholar 

  16. Bonner, W. M. J. Cell Biol. 64, 421–430 (1975).

    Article  CAS  Google Scholar 

  17. Smith, A. E. et al. Proc. R. Soc. B226, 43–58 (1985).

    ADS  CAS  Google Scholar 

  18. Richardson, W. D., Roberts, B. L. & Smith, A. E. Cell 44, 77–85 (1980).

    Article  Google Scholar 

  19. Paine, P. L., Moore, J. R. & Horowitz, S. D. Nature 254, 104–114 (1975).

    Article  ADS  Google Scholar 

  20. Wickner, W. T. & Lodish, H. F. Science 230, 400–407 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Laemmli, V. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  22. Erickson, B. W. & Merrified, R. B. in The Proteins Vol. 2, 3rd edn (eds Neurath, H. Hill, R. L. & Boeda, C.-L.) 257–493 (Academic, New York, 1976).

    Google Scholar 

  23. Watts, T. H., Gariepy, J., Schoolnik, G. K. & McConnell, H. M. Proc. natn. Acad. Sci. U.S.A. 82, 5480–5484 (1985).

    Article  ADS  CAS  Google Scholar 

  24. Peltz, G., Spudich, J. A. & Parham, P. J. Cell Biol. 100, 1016–1023 (1985).

    Article  CAS  Google Scholar 

  25. Dulbecco, R. & Vogt, M. J. exp. Med. 99, 167 (1954).

    Article  CAS  Google Scholar 

  26. Gurdon, J. B. J. Embryol. exp. Morph. 36, 523–540 (1976).

    CAS  Google Scholar 

  27. Bradford, M. Analyt. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldfarb, D., Gariépy, J., Schoolnik, G. et al. Synthetic peptides as nuclear localization signals. Nature 322, 641–644 (1986). https://doi.org/10.1038/322641a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322641a0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
  NODES
INTERN 1
twitter 1