Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The ATM–Chk2–Cdc25A checkpoint pathway guards against radioresistant DNA synthesis

Abstract

When exposed to ionizing radiation (IR), eukaryotic cells activate checkpoint pathways to delay the progression of the cell cycle1,2,3. Defects in the IR-induced S-phase checkpoint cause ‘radioresistant DNA synthesis’, a phenomenon that has been identified in cancer-prone patients suffering from ataxia-telangiectasia, a disease caused by mutations in the ATM gene4,5,6. The Cdc25A phosphatase7 activates the cyclin-dependent kinase 2 (Cdk2) needed for DNA synthesis8,9, but becomes degraded in response to DNA damage10 or stalled replication11. Here we report a functional link between ATM, the checkpoint signalling kinase Chk2/Cds1 (Chk2)12 and Cdc25A, and implicate this mechanism in controlling the S-phase checkpoint. We show that IR-induced destruction of Cdc25A requires both ATM and the Chk2-mediated phosphorylation of Cdc25A on serine 123. An IR-induced loss of Cdc25A protein prevents dephosphorylation of Cdk2 and leads to a transient blockade of DNA replication. We also show that tumour-associated Chk2 alleles13 cannot bind or phosphorylate Cdc25A, and that cells expressing these Chk2 alleles, elevated Cdc25A or a Cdk2 mutant unable to undergo inhibitory phosphorylation (Cdk2AF) fail to inhibit DNA synthesis when irradiated. These results support Chk2 as a candidate tumour suppressor, and identify the ATM–Chk2–Cdc25A–Cdk2 pathway as a genomic integrity checkpoint that prevents radioresistant DNA synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects and regulation of IR-induced destruction of Cdc25A.
Figure 2: Failure of Chk2 mutants to bind and induce degradation of Cdc25A abrogates the S-phase checkpoint.
Figure 3: IR-induced destruction of Cdc25A requires functional ATM and Chk2.
Figure 4: Chk2 phosphorylates Cdc25A on Ser 123 and triggers its IR-induced destruction.
Figure 5: Model of the IR-induced S-phase checkpoint pathway in normal (left) versus checkpoint-deficient (right) cells.

Similar content being viewed by others

References

  1. Weinert, T. DNA damage and checkpoint pathways: molecular anatomy and interactions with repair. Cell 94, 555–558 (1998).

    Article  CAS  Google Scholar 

  2. Hartwell, L. H. & Kastan, M. B. Cell cycle control and cancer. Science 266, 1821–1828 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Elledge, S. J. Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664–1672 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Painter, R. B. & Young, B. R. Radiosensitivity in ataxia-telangiectasia: a new explanation. Proc. Natl Acad. Sci. USA 77, 7315–7317 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Rotman, G. & Shiloh, Y. ATM: a mediator of multiple responses to genotoxic stress. Oncogene 18, 6135–6144 (1999).

    Article  CAS  Google Scholar 

  6. Stewart, G. S. et al. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99, 577–587 (1999).

    Article  CAS  Google Scholar 

  7. Galaktionov, K. & Beach, D. Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins. Cell 67, 1181–1194 (1991).

    Article  CAS  Google Scholar 

  8. Hoffmann, I., Draetta, G. & Karsenti, E. Activation of the phosphatase activity of human cdc25A by a cdk2-cyclin E dependent phosphorylation at the G1/S transition. EMBO J. 13, 4302–4310 (1994).

    Article  CAS  Google Scholar 

  9. Jinno, S. et al. Cdc25A is a novel phosphatase functioning early in the cell cycle. EMBO J. 13, 1549–1556 (1994).

    Article  CAS  Google Scholar 

  10. Mailand, N. et al. Rapid destruction of Cdc25A in response to DNA damage. Science 288, 1425–1429 (2000).

    Article  ADS  CAS  Google Scholar 

  11. Molinari, M. et al. Human Cdc25A inactivation in response to S phase inhibition and its role in preventing premature mitosis. EMBO Reps 1, 71–79 (2000).

    Article  CAS  Google Scholar 

  12. Matsuoka, S., Huang, M. & Elledge, S. J. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282, 1893–1897 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Bell, D. W. et al. Heterozygous germ line hCHK2 mutations in Li–Fraumeni syndrome. Science 286, 2528–2531 (1999).

    Article  CAS  Google Scholar 

  14. Gu, Y., Rosenblatt J. & Morgan, D. O. Cell cycle regulation of CDK2 activity by phosphorylation of Thr160 and Tyr15. EMBO J. 11, 3995–4005 (1992).

    Article  CAS  Google Scholar 

  15. Boddy, M. N., Furnari, B., Mondesert, O. & Russell, P. Replication checkpoint enforced by kinases Cds1 and Chk1. Science 280, 909–912 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Furnari, B., Rhind, N. & Russell, P. Cdc25 mitotic inducer _targeted by chk1 DNA damage checkpoint kinase. Science 277, 1495–1497 (1997).

    Article  CAS  Google Scholar 

  17. Peng, C. Y. et al. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277, 1501–1505 (1997).

    Article  CAS  Google Scholar 

  18. Sanchez, Y. et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277, 1497–1501 (1997).

    Article  CAS  Google Scholar 

  19. Zeng, Y. et al. Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cds1 or Chk1. Nature 395, 507–510 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Chehab, N. H., Malikzay, A., Appel, M. & Halazonetis, T. D. Chk2/hCds1 functions as a DNA damage checkpoint in G1 by stabilizing p53. Genes Dev. 14, 278–288 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun, Z., Hsiao, J., Fay, D. S. & Stern, D. F. Rad 53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Science 281, 272–274 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Durocher, D., Henckel, J., Fersht, A. R. & Jackson, S. P. The FHA domain is a modular phosphopeptide recognition motif. Mol. Cell 4, 387–394 (1999).

    Article  CAS  Google Scholar 

  23. Hirao, A. et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824–1827 (2000).

    Article  ADS  CAS  Google Scholar 

  24. Chan, T. A., Hermeking, H., Lengauer, C., Kinzler, K. W. & Vogelstein, B. 14-3-3σ is required to prevent mitotic catastrophe after DNA damage. Nature 401, 616–620 (1999).

    Article  ADS  CAS  Google Scholar 

  25. Giaccia, A. J. & Kastan, M. B. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 12, 2973–2983 (1998).

    Article  CAS  Google Scholar 

  26. Lim, D. S. et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404, 613–617 (2000).

    Article  ADS  CAS  Google Scholar 

  27. Xie, G. et al. Requirements for p53 and ATM gene product in the regulation of G1/S and S phase checkpoints. Oncogene 16, 721–736 (1998).

    Article  CAS  Google Scholar 

  28. Galaktionov, K. et al. CDC25 phosphatases as potential human oncogenes. Science 269, 1575–1577 (1995).

    Article  ADS  CAS  Google Scholar 

  29. Lee, J. S., Collins, K. M., Brown, A. L., Lee, C. H. & Chung, J. H. hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature 404, 201–204 (2000).

    Article  ADS  CAS  Google Scholar 

  30. Santoni-Rugiu, E., Falck, J., Mailand, N., Bartek, J & Lukas, J. Involvement of Myc activity in a G1/S-promoting mechanism parallel to the pRb/E2F pathway. Mol. Cell. Biol. 20, 3497–3509 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Elledge, G. Evan, S. I. Reed and Y. Shiloh for providing reagents; K. Hansen for advice; and the Danish Cancer Society, the Human Frontier Science Programme, Alfred Benzon's Fund, the European Commission, the Danish Medical Research Council and the Danish Cancer Research Fund for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiri Bartek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falck, J., Mailand, N., Syljuåsen, R. et al. The ATM–Chk2–Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410, 842–847 (2001). https://doi.org/10.1038/35071124

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35071124

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
  NODES
INTERN 1
twitter 1