Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19ARF) and is amplified in a subset of human breast cancers

Abstract

To identify new immortalizing genes with potential roles in tumorigenesis, we performed a genetic screen aimed to bypass the rapid and tight senescence arrest of primary fibroblasts deficient for the oncogene Bmi1. We identified the T-box member TBX2 as a potent immortalizing gene that acts by downregulating Cdkn2a (p19ARF). TBX2 represses the Cdkn2a (p19ARF) promoter and attenuates E2F1, Myc or HRAS-mediated induction of Cdkn2a (p19ARF). We found TBX2 to be amplified in a subset of primary human breast cancers, indicating that it might contribute to breast cancer development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic outline of the experimental set-up for rescue of Bmi1−/− MEFs using retroviral cDNA libraries.
Figure 2: Results of a secondary screen in which Bmi1−/− MEFs were infected with MoMuLV-mobilized control (empty) virus (a), mobilized Bmi1 virus (b), virus from a spontaneously immortalized primary clone (c), or virus from a TBX2 immortalized primary clone (d).
Figure 3: TBX2 immortalizes MEFs and delays senescence of primary human fibroblasts.
Figure 4: TBX2 downregulates Cdkn2a.
Figure 5: TBX2 overexpression leaves pathways downstream of Cdkn2a intact.
Figure 6: TBX2 counteracts induction of Cdkn2a (p19ARF) by Myc and HRAS.
Figure 7: TBX2 represses the CDKN2A (ARF) promoter.
Figure 8: Amplification and overexpression of TBX2 in human breast cancer cells.

Similar content being viewed by others

References

  1. Wynford-Thomas, D. Cellular senescence and cancer. J. Pathol. 187, 100–111 (1999).

    Article  CAS  Google Scholar 

  2. Levine, A.J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–333 (1997).

    Article  CAS  Google Scholar 

  3. Serrano, M., Hannon, G.J. & Beach, D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366, 704–707 (1993).

    Article  CAS  Google Scholar 

  4. Ruas, M. & Peters, G. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim. Biophys. Acta 1378, F115–F177 (1998).

    CAS  Google Scholar 

  5. Sherr, C.J. Tumor surveillance via the ARF-p53 pathway. Genes Dev. 12, 2984–2991 (1998).

    Article  CAS  Google Scholar 

  6. Sharpless, N.E. & DePinho, R.A. The INK4A/ARF locus and its two gene products. Curr. Opin. Genet. Dev. 9, 22–30 (1999).

    Article  CAS  Google Scholar 

  7. Quelle, D.E., Zindy, F., Ashmun, R.A. & Sherr, C.J. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83, 993–1000 (1995).

    Article  CAS  Google Scholar 

  8. Kamijo, T. et al. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc. Natl Acad. Sci. USA 95, 8292–8297 (1998).

    Article  CAS  Google Scholar 

  9. Pomerantz, J. et al. The Ink4a tumor suppressor gene product p19ARF, interacts with MDM2 and neutralizes MDM2' s inhibition of p53. Cell 92, 713–723 (1998).

    Article  CAS  Google Scholar 

  10. Stott, F.J. et al. The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 17, 5001–5014 (1998).

    Article  CAS  Google Scholar 

  11. Zhang, Y., Xiong, Y. & Yarbrough, W.G. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92, 725–734 (1998).

    Article  CAS  Google Scholar 

  12. Weber, J.D., Taylor, L.J., Roussel, M.F., Sherr, C.J. & Bar-Sagi, D. Nucleolar ARF sequesters Mdm2 and activates p53. Nature Cell Biol. 1, 20–26 (1999).

    Article  CAS  Google Scholar 

  13. Zhang, Y. & Xiong, Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol. Cell 3, 579–591 (1999).

    Article  CAS  Google Scholar 

  14. Tao, W. & Levine, A.J. P19ARF stabilizes p53 by blocking nucleo-plasmic shuttling of Mdm2. Proc. Natl Acad. Sci. USA 96, 6937–6941 (1999).

    Article  CAS  Google Scholar 

  15. Sherr, C.J. & Weber, J.D. The ARF/p53 pathway. Curr. Opin. Genet. Dev. 10, 94–99 (2000).

    Article  CAS  Google Scholar 

  16. Eischen C.M., Weber, J.D., Roussel, M.F., Sherr, C.J. & Cleveland, J.L. Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 13, 2658–2669 (1999).

    Article  CAS  Google Scholar 

  17. Schmitt, C.A., McCurrach, M.E., de Stanchina, E., Wallace-Brodeur, R.R. & Lowe, S.W. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev. 13, 2670–2677 (1999).

    Article  CAS  Google Scholar 

  18. Jacobs, J.J.L. et al. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev. 13, 2678–2690 (1999).

    Article  CAS  Google Scholar 

  19. Jacobs, J.J.L., Kieboom, K., Marino, S., DePinho, R.A. & van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168 (1999).

    Article  CAS  Google Scholar 

  20. Haupt, Y., Bath, M.L., Harris, A.W. & Adams, J.M. Bmi1 transgene induces lymphomas and collaborates with myc in tumorigenesis. Oncogene 8, 3161–3164 (1993).

    CAS  Google Scholar 

  21. Alkema, M.J., Jacobs, H., van Lohuizen, M. & Berns, A. Perturbation of B and T cell development and predisposition to lymphomagenesis in Eμ-Bmi1 transgenic mice require the Bmi1 RING finger. Oncogene 15, 899–910 (1997).

    Article  CAS  Google Scholar 

  22. Campbell, C., Goodrich, K., Casey, G. & Beatty, B. Cloning and mapping of a human gene (TBX2) sharing a highly conserved protein motif with the Drosophila omb gene. Genomics 28, 255–260 (1995).

    Article  CAS  Google Scholar 

  23. Law, D.J., Gebuhr, T., Garvey, N., Agulnik, S.I. & Silver, L.M. Identification, characterization, and localization to chromosome 17q21–22 of the human TBX2 homolog, member of a conserved developmental gene family. Mamm. Genome 6, 793–797 (1995).

    Article  CAS  Google Scholar 

  24. Papaioannou, V.E. & Silver, L.M. The T-box gene family. Bioessays 20, 9–19 (1998).

    Article  CAS  Google Scholar 

  25. Quelle, D.E. et al. Cloning and characterization of murine p16INK4a and p15INK4b genes. Oncogene 11, 635–645 (1995).

    CAS  Google Scholar 

  26. Kamijo, T.F. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649–659 (1997).

    Article  CAS  Google Scholar 

  27. Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996).

    Article  CAS  Google Scholar 

  28. Zindy, F. et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12, 2424–2433 (1998).

    Article  CAS  Google Scholar 

  29. Inoue, K., Roussel, M.F. & Sherr, C.J. Induction of ARF tumor suppressor gene expression and cell cycle arrest by transcription factor DMP1. Proc. Natl Acad. Sci. USA 96, 3993–3998 (1999).

    Article  CAS  Google Scholar 

  30. Bates, S. et al. p14ARF links the tumour suppressors RB and p53. Nature 395,124–125 (1998).

    Article  CAS  Google Scholar 

  31. Robertson, K.D. & Jones, P.A. The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53. Mol. Cell. Biol. 18, 6457–6473 (1998).

    Article  CAS  Google Scholar 

  32. Carreira, S., Dexter, T.J., Yavuzer, U., Easty, D.J. & Goding, C.R. Brachyury-related transcription factor Tbx2 and repression of the melanocyte-specific TRP-1 promoter. Mol. Cell. Biol. 18, 5099–5108 (1998).

    Article  CAS  Google Scholar 

  33. He, M.I., Wen, L., Campbell, C.E., Wu, J.Y. & Rao, Y. Transcription repression by Xenopus ET and its human ortholog TBX3, a gene involved in ulnar-mammary syndrome. Proc. Natl Acad. Sci. USA 96, 10212–10217 (1999).

    Article  CAS  Google Scholar 

  34. Maestro, R. et al. Twist is a potential oncogene that inhibits apoptosis. Genes Dev. 13, 2207–2217 (1999).

    Article  CAS  Google Scholar 

  35. Courjal, F. & Theillet, C. Comparative genomic hybridization analysis of breast tumors with predetermined profiles of DNA amplification. Cancer Res. 57, 4368–4377 (1997).

    CAS  Google Scholar 

  36. Barlund, M. et al. Increased copy number at 17q22–24 by CGH in breast cancer is due to high-level amplification of two separate regions. Genes Chromosomes Cancer 20, 372–376 (1997).

    Article  CAS  Google Scholar 

  37. Weber, R.G. et al. Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression. Proc. Natl Acad. Sci. USA 94, 14719–14724 (1997).

    Article  CAS  Google Scholar 

  38. Pedeutour, F. et al. Ring 22 chromosomes in dermatofibrosarcoma protuberans are low-level amplifiers of chromosome 17 and 22 sequences. Cancer Res. 55, 2400–2403 (1995).

    CAS  Google Scholar 

  39. Couch, F.J. et al. Localization of PS6K to chromosomal region 17q23 and determination of its amplification in breast cancer. Cancer Res. 59, 1408–1411 (1999).

    CAS  Google Scholar 

  40. Cuny, M. et al. Relating genotype and phenotype in breast cancer: an analysis of the prognostic significance of amplification at eight different genes or loci and of p53 mutations. Cancer Res. 60, 1077–1083 (2000).

    CAS  Google Scholar 

  41. Tanaka, N. et al. Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1. Cell 77, 829–839 (1994).

    Article  CAS  Google Scholar 

  42. Gibson-Brown, J.J., Agulnik, S.I., Silver, L.M., Niswander, L. & Papaioannou, V.E. Involvement of T-box genes Tbx2-Tbx5 in vertebrate limb specification and development. Development 125, 2499–2509 (1998).

    CAS  Google Scholar 

  43. Li, L.-H., Nerlov, C., Prendergast, G., MacGregor, D. & Ziff, E.B. c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II. EMBO J. 13, 4070–4079 (1994).

    Article  CAS  Google Scholar 

  44. Wicking, C., Smyth, I. & Bale, A. The hedgehog signaling pathway in tumorigenesis and development. Oncogene 18, 7844–7851 (1999).

    Article  CAS  Google Scholar 

  45. Miller, J.R., Hocking, A.M., Brown, J.D. & Moon, R.T. Mechanism and function of signal transduction by the Wnt/β-catenin and Wnt/Ca2+ pathways. Oncogene 18, 7860–7872 (1999).

    Article  CAS  Google Scholar 

  46. Nusse, R. & Varmus, H.E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31, 99–109 (1982).

    Article  CAS  Google Scholar 

  47. Roose, J. et al. Synergy between tumor suppressor APC and the β-catenin-Tcf4 _target Tcf1. Science 285, 1923–1926 (1999).

    Article  CAS  Google Scholar 

  48. He, T.-C. et al. Identification of c-MYC as a _target of the APC pathway. Science 281, 1509–1512 (1998).

    Article  CAS  Google Scholar 

  49. van Lohuizen, M. et al. Identification of cooperating oncogenes in Eμ-myc transgenic mice by provirus tagging. Cell 65, 735–752 (1991).

    Article  Google Scholar 

  50. Clahsen, P.C. et al. p53 protein accumulation and response to adjuvant chemotherapy in premenopausal women with node-negative early breast cancer. J. Clin. Oncol. 16, 470–479 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Berns for providing retroviral library DNA; C.J. Sherr for Cdkn2a (ARF)−/− mice; R.A. DePinho for Cdkn2a (INK4a/ARF)−/− mice; L.A. Donehower for Trp53−/− mice; S. Jones for Mdm2−/−;Trp53−/− MEFs; P. Jones for CDKN2A (ARF) promoter-CAT reporter plasmids; M.Oren for cyclin G-Luc plasmid; G. Zambetti for 2A10 (αMdm2) serum; H. Masselink and M. Hijmans for pCMV-E2F1 plasmid; K. Kieboom, C. Bosch, D. Atsma and J. Poodt for technical assistance; A.H. Lund for the 1.7-kb mouse Cdkn2a (ARF) promoter-Luciferase reporter; and R. Agami and J.-W. Voncken for comments on the manuscript. J.J.L.J, P.K. and E.R.M were supported by grants from the Dutch Cancer Society (K.W.F). G.Q.D was supported by grants from the Edward Mallinckrodt, Jr. Foundation and NCI CA76418-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten van Lohuizen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, J., Keblusek, P., Robanus-Maandag, E. et al. Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19ARF) and is amplified in a subset of human breast cancers. Nat Genet 26, 291–299 (2000). https://doi.org/10.1038/81583

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81583

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
  NODES
INTERN 1
todo 1
twitter 1