Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

An efficient route to human bispecific IgG

Abstract

Production of bispecific IgG (BsIgG) by coexpressing two different antibodies is inefficient due to unwanted pairings of the component heavy and light chains. To overcome this problem, heavy chains were remodeled for heterodimerization using engineered disulfide bonds in combination with previously identified “knobs-into-holes” mutations. One of the variants, S354C:T366W/Y349′C:T366′S:L368′A:Y407′V, gave near quantitative (95%) heterodimerization. Light chain mispairing was circumvented by using an identical light chain for each arm of the BsIgG. Antibodies with identical light chains that bind to different antigens were identified from an scFv phage library with a very restricted light chain repertoire for the majority (50/55) of antigen pairs tested. A BsIgG capable of simultaneously binding to the human receptors HER3 and cMpI was prepared by coexpressing the common light chain and corresponding remodeled heavy chains followed by protein A chromatography. The engineered heavy chains retain their ability to support antibody-dependent cell-mediated cytotoxicity as demonstrated with an anti-HER2 antibody.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Holliger, P. and Winter, G. 1943. Engineering bispecific antibodies. Current Opin Biotechnol. . 4: 446–449.

    Article  Google Scholar 

  2. Carter, P., Ridgway, J. and Zhu, Z. 1995. Toward the production of bispecific antibody fragments for clinical applications. J Hematother . 4: 463–470.

    Article  CAS  Google Scholar 

  3. Plückthun, A. and Pack, P. 1997. New protein engineering approaches to multivalent and bispecific antibody fragments. Immunotechnology. 3: 83–105.

    Article  Google Scholar 

  4. Milstem, C. and Cuello, A.C. 1983. Hybrid hybnodomas and their use in immunohistochemistry. Nature 305: 537–540.

    Article  Google Scholar 

  5. Suresh, M.R., Cuello, A.C. and Milstem, C. 1986. Bispecific monoclonal antibodies from hybrid hydndomas. Methods Enzymol.121: 210–228

    Article  CAS  Google Scholar 

  6. Ridgway, J.B.B., Presta, L.G. and Carter, P. 1996. “Knobs-mto-holes” engineering of antibody CH3 domains for heavy chain heterodimenzation. Protein Eng. 9: 617–621

    Article  CAS  Google Scholar 

  7. Atwell, S., Ridgway, J.B.B., Wells, J.A. and Carter, P. 1997. Stable heterodimers from remodeling the domain interface of a homodimer using a phage display library. J Mol Biol. 270: 26–35

    Article  CAS  Google Scholar 

  8. Villafranca, J.E., Howell, E.E., Voet, D.H., Strobel, M.S., Ogden, R.C., Abelson, J.N. and Kraut, J. 1983. Directed mutagenesis of dihydrofolate reductase. Science . 222: 782–788

    Article  CAS  Google Scholar 

  9. Perry, L.J. and Wetzel, R. 1984 Disulfide bond engineered into T4 lysozyme stabilization of the protein toward thermal inactivation. Science. 276: 555–557

    Article  Google Scholar 

  10. Wells, J.A. and Powers, D.P. 1986 In vivo formation and stability of engineered disulfide bonds in subtihsm. J Biol Chem. 261: 6564–6570

    CAS  PubMed  Google Scholar 

  11. Nissim, A., Hoogenboom, H.R., Tomlmson, I.M., Flynn, G., Midgley, C., Lane, D. and 1994 Antibody fragments from a “single pot” phage display library as immunochemical reagents. EMBOJ. 13: 692–698

    Article  CAS  Google Scholar 

  12. Vaughan, T.J., Williams, A.J., Pntchard, K., Osbourn, J.K., Pope, A.R., Earnshaw

  13. Sriravasan,N., Sowdhammi, R., Ramaknshnan, C., and Balaram, P 1990 Conformations of disulfide bridges in proteins Int J Peptides Protein Res 36:147–155

    Article  Google Scholar 

  14. Chamow, S M, Zhang, D Z, Tan, X Y, Mhatre, S M, Marsters, S A, Peers, D H et al 1994 A humanized, bispecific immunoadhesin-antibody that re_targets CD3+ effectors to kill HIV-1-infected cells J Immunol 153:4268–4280

    CAS  PubMed  Google Scholar 

  15. Plowman, G D Whitney, G S, Neubauer, M G, Green, J M, McDonald, V.L., Todaro, G J, and Shoyab, M 1990 Molecular cloning and expression of an additional epidermal growth factor receptor-related gene Proc Natl Acad Sci USA 87:4905–4909

    Article  CAS  Google Scholar 

  16. Carter, P Presta, L, Gorman, C M, Ridgway, J B B, Henner, D, Wong, W L T, et al 1992 Humanization of an anti-p185HER2 antibody for human cancer therapy Proc Natl Acad Sci USA 89:4285–4289

    Article  CAS  Google Scholar 

  17. Lewis G.D., Figan, I, Fendly, B Wong, W.L., Carter, P, Gorman, C, and Shepard, H M 1993 Differential responses of human tumor cells lines to anti-pi 185HER2 monoclonal antibodies Cancer Immunol Immunother 37:255–263

    Article  CAS  Google Scholar 

  18. Deisenhofer, J 1981 Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2 9- and 2 8 Å resolution Biochemistry 20:2361–2370

    Article  CAS  Google Scholar 

  19. Kabat E A, Wu, T.T., Perry, H M, Gottesman, K S, and Foeller, C (eds) 1991 pp 688–696 in Sequences of proteins of immunological interest, 5th ed, Vol 1 NIH Bethesda, MD

    Google Scholar 

  20. Miller, S 1990 Protein-protein recognition and the association of immunoglobu-lin constant domains J Mol Biol 216:965–973

    Article  CAS  Google Scholar 

  21. Dietsch, M T, Smith, V.F., Cosand, W L, Damle, N K, Ledbetter, J A, Lmsiey, P.S., and Aruffo, A 1993 Bispecific receptor globulins, novel tools for the study of cellular interactions Preparation and characterization of an E-selectm/P-selectm bispecific receptor globulin J Immunol Methods 162:123–132

    Article  CAS  Google Scholar 

  22. Hale, G, Dyer, M J S Clark, M R, Phillips, J M, Marcus, R, Riechmann, L et al 1988 Remission induction in non-Hodgkm lymphoma with reshaped human monoclonal antibody CAMPATH 1H Lancet 2:1394–1399

    Article  CAS  Google Scholar 

  23. Caron, P.C., June, J G, Scott, A M, Finn, R D, Divgi, R D Graham, M C et al 1994 A phase 1B tnal of humanized monoclonal antibody M195 (anti-CD33) in myeloid leukemia specific _targeting without immunogenicity Blood 83:1760–1768

    CAS  PubMed  Google Scholar 

  24. Sharkey R M, Malik, J, Shevitz, J, Behr, T, Dunn, R, Swayne, L C et al 1995 Evaluation of a complementarity-determining region-grafted (humanized) anti-carcmoembryonic antigen monoclonal antibody in preclinical and clinical stud les Cancer Res 55:5935s–5945s

    CAS  PubMed  Google Scholar 

  25. Baselga, J, Tnpathy, D, Mendelsohn, J, Baughman, S, Benz C C, Dantis, L et al 1996 Phase II study of weekly intravenous recombmant humanized anti-pi 185HER2 monoclonal antibody in patients with HER2/neu-overexpressmg metastatic breast cancer J Clin Oncol 14:737–744

    Article  CAS  Google Scholar 

  26. Isaacs, J D, Watts, R A, Hazleman, B L, Hale, G, Keogan, M T, Cobbold, S P, and Waldmann, H 1992 Humanised monoclonal antibody therapy for rheumatoid arthritis Lancet 340:748–752

    Article  CAS  Google Scholar 

  27. Vmcenti, F, Lantz, M, Bimbaum, J, Garovoy, M, Mould, D, Hakimi, J et al 1997 A phase I trial of humanized anti-mterleukin 2 receptor antibody in renal transplantation Transplantation 63:33–38

    Article  Google Scholar 

  28. Yang, W -P, Green K, Pinz Sweeney, S, Bnones, A T, Burton, D R, and Barbas C F 1995 CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range J Mol Biol 254:392–403

    Article  CAS  Google Scholar 

  29. Schier, R, McCall, A, Adam, G P, Marshall, K W, Memtt, H, Yim M et al 1996 Isolation of picomolar affinity anti-c-erbB-2 single-chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site J Mol Biol 263:551–567

    Article  CAS  Google Scholar 

  30. Figini, M, Marks, J D, Winter, G and Griffiths, A D 1994 In vitro assembly of repertoires of antibody chains on the surface of phage by renaturation J Mol Biol 239:68–78

    Article  CAS  Google Scholar 

  31. Rodngues, M L, Presta, L G, Kotts, C E, Wirth, C, Mordenti, J, Osaka, G et al 1995 Development of a humanized disulfide-stabilized anti-p185HER2 Fv p-lacta-mase fusion protein for activation of a cephalosponn doxorubicm prodrug Cancer Res 55:63–70

    Google Scholar 

  32. Kunkel, T.A., Roberts, J D, and Zakour, R A 1987 Rapid and efficient site-specific mutagenesis without phenotypic selection Methods Enzymoi 154:367–382

    Article  CAS  Google Scholar 

  33. Sanger, F, Nicklen, S and Coulson, A R 1977 DNA sequencing with chain terminating inhibitors Proc Natl Acad Sci USA 74:5463–5467

    Article  CAS  Google Scholar 

  34. Gorman, C M, Gies, D R, and McCray, G 1990 Transient production of proteins using an adenovirus transformed cell line DNA and Protein Engmeenng Techniques 2:3–10

    Google Scholar 

  35. Presta, L G, Lahr, S J, Shields, R L, Porter, J P, Gorman, C M, Fendly, B M, and Jardieu, P M 1993 Humanization of an antibody directed against IgE J Immunol 151:2623–2632

    CAS  PubMed  Google Scholar 

  36. Byrn, R A, Mordenti, J, Lucas, C, Smith, D, Marsters, S A, Johnson, J S et al 1990 Biological properties of a CD4 immunoadhesm Nature 344:667–670

  37. Marks J D, Hoogenboom, H R, Bonnert, T P, McCafferty, J Griffiths, A D, and Winter, G 1991 By-passing immunization Human antibodies from V-gene libraries displayed on phage J Mol Biol 222:581–597

    Article  CAS  Google Scholar 

  38. Feng, D F and Doolittie, R F 1985 Aligning ammo acid sequences comparison of commonly used methods J Mol Evol 21:112–123

    Article  CAS  Google Scholar 

  39. Feng, D F and Doolittie, R F 1987 Progressive alignment as a prerequisite to correct phylogenetic trees J Mol Evol 25:351-360

    Article  CAS  Google Scholar 

  40. Feng, D F and Doolittie, R F 1990 Progressive alignment and phylogenetic tree construction of protein sequences Methods Enzymol 183:375–387

    Article  CAS  Google Scholar 

  41. Xie, M H, Yuan, J, Adams, C, and Gurney, A 1997 Direct demonstration of MuSK involvement in acetylcholme receptor clustering through identification of agonist ScFv Nature Biotechnology 15:768–771

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merchant, A., Zhu, Z., Yuan, J. et al. An efficient route to human bispecific IgG. Nat Biotechnol 16, 677–681 (1998). https://doi.org/10.1038/nbt0798-677

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0798-677

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
  NODES
Association 1
INTERN 1
Note 2
twitter 1