Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Systems biology in drug discovery

Abstract

The hope of the rapid translation of 'genes to drugs' has foundered on the reality that disease biology is complex, and that drug development must be driven by insights into biological responses. Systems biology aims to describe and to understand the operation of complex biological systems and ultimately to develop predictive models of human disease. Although meaningful molecular level models of human cell and tissue function are a distant goal, systems biology efforts are already influencing drug discovery. Large-scale gene, protein and metabolite measurements ('omics') dramatically accelerate hypothesis generation and testing in disease models. Computer simulations integrating knowledge of organ and system-level responses help prioritize _targets and design clinical trials. Automation of complex primary human cell–based assay systems designed to capture emergent properties can now integrate a broad range of disease-relevant human biology into the drug discovery process, informing _target and compound validation, lead optimization, and clinical indication selection. These systems biology approaches promise to improve decision making in pharmaceutical development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Approaches to systems biology in the pharmaceutical industry.
Figure 2: Development cycle of integrated in silico models using component level and system response data.
Figure 3: Leveraging complexity in cell systems biology for drug discovery: biologically multiplexed activity profiling (BioMAP) applied to gene function, network architecture and drug activity relationships.

Similar content being viewed by others

References

  1. DiMasi, J.A., Hansen, R.W. & Grabowski, H.G. The price of innovation: new estimates of drug development costs. J. Health Econ. 22, 151–185 (2003).

    Article  Google Scholar 

  2. Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001).

    Article  CAS  Google Scholar 

  3. Ideker, T. & Lauffenburger, D. Building with a scaffold: emerging strategies for high- to low-level cellular modeling. Trends Biotechnol. 21, 255–262 (2003).

    Article  CAS  Google Scholar 

  4. Hunter, P.J. & Borg, T.K. Integration from proteins to organs: the Physiome Project. Nat. Rev. Mol. Cell Biol. 4, 237–243 (2003).

    Article  CAS  Google Scholar 

  5. Kulkarni, N.H. et al. Gene expression profiles classify different classes of bone therapies: PTH, Alendronate and SERMs, Poster 307, 31st European Symposium on Calicified Tissue, June 5, 2004, Nice, France; http://www.ectsoc.org/nice2004/abstracts.htm#onl

  6. Weston, A.D. & Hood, L. Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J. Proteome. Res. 3, 179–196 (2004).

    Article  CAS  Google Scholar 

  7. Clish, C.B. et al. Integrative biological analysis of the APOE*3-leiden transgenic mouse. Omics 8, 3–13 (2004).

    Article  CAS  Google Scholar 

  8. Kantor, A.B. et al. Biomarker discovery by comprehensive phenotyping for autoimmune diseases. Clin. Immunol. 111, 186–195 (2004).

    Article  CAS  Google Scholar 

  9. Davidson, E.H. et al. A genomic regulatory network for development. Science 295, 1669–1678 (2002).

    Article  CAS  Google Scholar 

  10. Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934 (2001).

    Article  CAS  Google Scholar 

  11. Covert, M.W., Knight, E.M., Reed, J.L., Herrgard, M.J. & Palsson, B.O. Integrating high-throughput and computational data elucidates bacterial networks. Nature 429, 92–96 (2004).

    Article  CAS  Google Scholar 

  12. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  Google Scholar 

  13. Crampin, E.J. et al. Computational physiology and the Physiome Project. Exp. Physiol 89, 1–26 (2004).

    Article  Google Scholar 

  14. Noble, D. Modeling the heart—from genes to cells to the whole organ. Science 295, 1678–1682 (2002).

    Article  CAS  Google Scholar 

  15. Bassingthwaighte, J.B. & Vinnakota, K.C. The computational integrated myocyte: a view into the virtual heart. Ann. NY Acad. Sci. 1015, 391–404 (2004).

    Article  Google Scholar 

  16. Musante, C.J., Lewis, A.K. & Hall, K. Small- and large-scale biosimulation applied to drug discovery and development. Drug Discov. Today 7, S192–S196 (2002).

    Article  CAS  Google Scholar 

  17. Stokes, C.L. et al. A computer model of chronic asthma with application to clinical studies: example of treatment of exercise-induced asthma. J. Allergy. Clin. Immunol. 107, 933 (2001).

    Google Scholar 

  18. Lewis, A.K. et al. The roles of cells and mediators in a computer model of chronic asthma. Inter. Arch. Allergy Immunol. 124, 282–286 (2001).

    Article  CAS  Google Scholar 

  19. Leckie, M.J. et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356, 2144–2148 (2000).

    Article  CAS  Google Scholar 

  20. Bergman, R.N., Ider, Y.Z., Bowden, C.R. & Cobelli, C. Quantitative estimation of insulin sensitivity. Am. J. Physiol. 236, E667–E677 (1979).

    CAS  PubMed  Google Scholar 

  21. Kansal, A.R. Modeling approaches to type 2 diabetes. Diabetes Technol. Ther. 6, 39–47 (2004).

    Article  Google Scholar 

  22. Eungdamrong, N.J. & Iyengar, R. Modeling cell signaling networks. Biol. Cell 96, 355–362 (2004).

    Article  CAS  Google Scholar 

  23. Bhalla, U.S. & Iyengar, R. Emergent properties of networks of biological signaling pathways. Science 283, 381–387 (1999).

    Article  CAS  Google Scholar 

  24. Kelley, B.P. et al. PathBLAST: a tool for alignment of protein interaction networks. Nucleic Acids Res. 32, W83–W88 (2004).

    Article  CAS  Google Scholar 

  25. Coleman, R.A., Bowen, W.P., Baines, I.A., Woodrooffe, A.J. & Brown, A.M. Use of human tissue in ADME and safety profiling of development candidates. Drug Discov. Today 6, 1116–1126 (2001).

    Article  CAS  Google Scholar 

  26. Chanda, S.K. et al. Genome-scale functional profiling of the mammalian AP-1 signaling pathway. Proc. Natl. Acad. Sci. USA 100, 12153–12158 (2003).

    Article  CAS  Google Scholar 

  27. Haggarty, S.J., Koeller, K.M., Wong, J.C., Butcher, R.A. & Schreiber, S.L. Multidimensional chemical genetic analysis of diversity-oriented synthesis-derived deacetylase inhibitors using cell-based assays. Chem. Biol. 10, 383–396 (2003).

    Article  CAS  Google Scholar 

  28. Borisy, A.A. et al. Systematic discovery of multicomponent therapeutics. Proc. Natl. Acad. Sci. USA 100, 7977–7982 (2003).

    Article  CAS  Google Scholar 

  29. Marton, M.J. et al. Drug _target validation and identification of secondary drug _target effects using DNA microarrays. Nat. Med. 4, 1293–1301 (1998).

    Article  CAS  Google Scholar 

  30. Kunkel, E.J. et al. An integrative biology approach for analysis of drug action in models of human vascular inflammation. FASEB J. 18, 1279–1281 (2004).

    Article  CAS  Google Scholar 

  31. Kunkel, E.J. et al. Rapid structure-activity and selectivity analysis of kinase inhibitors by BioMAP analysis in complex human primary cell-based models. Assay Drug Dev. Technol. 2, 431–441 (2004).

    Article  CAS  Google Scholar 

  32. Plavec, I. et al. Method for analyzing signaling networks in complex cellular systems. Proc. Natl. Acad. Sci. USA 101, 1223–1228 (2004).

    Article  CAS  Google Scholar 

  33. Mach, F. Statins as novel immunomodulators: from cell to potential clinical benefit. Thromb. Haemost. 90, 607–610 (2003).

    Article  CAS  Google Scholar 

  34. Christopher, R. et al. Data-driven computer simulation of human cancer cell. Ann. NY Acad. Sci. 1020, 132–153 (2004).

    Article  CAS  Google Scholar 

  35. Wiley, H.S., Shvartsman, S.Y. & Lauffenburger, D.A. Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol. 13, 43–50 (2003).

    Article  CAS  Google Scholar 

  36. Schoeberl, B., Eichler-Jonsson, C., Gilles, E.D. & Muller, G. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat. Biotechnol. 20, 370–375 (2002).

    Article  Google Scholar 

  37. Eker, S. et al. Pathway logic: symbolic analysis of biological signaling. Pac. Symp. Biocomput. 7, 400–412 (2002).

    Google Scholar 

  38. Cho, K.H., Shin, S.Y., Lee, H.W. & Wolkenhauer, O. Investigations into the analysis and modeling of the TNF alpha-mediated NF-kappa B-signaling pathway. Genome Res. 13, 2413–2422 (2003).

    Article  CAS  Google Scholar 

  39. Hoffmann, A., Levchenko, A., Scott, M.L. & Baltimore, D. The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science 298, 1241–1245 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Writing of this review was supported in part by SBIR grants (R44 AI048255 and R43 AI049048) to BioSeek, Inc., and by NIH grants to E.C.B. The authors thank Evangelos Hytopoulos and Ivan Plavec for thoughtful criticism and input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene C Butcher.

Ethics declarations

Competing interests

E.J.K. is an employee, E.L.B. is a cofounder and vice president of research, and E.C.B. is a cofounder, chair of the SAB and member of the board of directors of BioSeek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butcher, E., Berg, E. & Kunkel, E. Systems biology in drug discovery. Nat Biotechnol 22, 1253–1259 (2004). https://doi.org/10.1038/nbt1017

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1017

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
  NODES
innovation 1
INTERN 2
Project 2
twitter 1