Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Desmosomal adhesion regulates epithelial morphogenesis and cell positioning

Abstract

Desmosomes are intercellular junctions of epithelia and are of widespread importance in the maintenance of tissue architecture. We provide evidence that desmosomal adhesion has a function in epithelial morphogenesis and cell-type-specific positioning. Blocking peptides corresponding to the cell adhesion recognition (CAR) sites of desmosomal cadherins block alveolar morphogenesis by epithelial cells from mammary lumen. Desmosomal CAR-site peptides also disrupt positional sorting of luminal and myoepithelial cells in aggregates formed by the reassociation of isolated cells. We demonstrate that desmosomal cadherins and E-cadherin are comparably involved in epithelial morphoregulation. The results indicate a wider role for desmosomal adhesion in morphogenesis than has previously been considered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of desmosomal cadherin expression in mammary luminal and myoepithelial cells.
Figure 2: Immunolocalization of cadherins in human and bovine non-pregnant mammary gland.
Figure 3: Desmocollin and desmoglein isoforms in mouse mammary gland primary cell cultures and cell lines.
Figure 4: Anti-adhesion peptides perturb alveolus-like morphogenesis of luminal mammary epithelial cells.
Figure 5: Luminal and myoepithelial cells sort out in rotary culture to form aggregates consisting of a cellular organization resembling that found in vivo.
Figure 6: Localization of integrins, but not BM components, to the outer surface of sorted aggregates.
Figure 7: Anti-adhesion peptides perturb myoepithelial cell sorting to the outside of aggregates.

Similar content being viewed by others

References

  1. Townes, P. L. & Holtfreter, J. Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. 128, 53–120 (1955).

    Article  Google Scholar 

  2. Steinberg, M. S. in Cellular Membranes in Development (ed. Locke, M.) 321–366 (Academic, New York, 1964).

    Book  Google Scholar 

  3. Koch, P. J. et al. _targeted disruption of the pemphigus vulgaris antigen (desmoglein 3) gene in mice causes loss of keratinocyte cell adhesion with a phenotype similar to pemphigus vulgaris. J. Cell Biol. 137, 1091–1102 (1997).

    Article  CAS  Google Scholar 

  4. McGrath, J. A. et al. Mutations in the plakophilin 1 gene result in ectodermal dysplasia/skin fragility syndrome. Nature Genet. 17, 240–244 (1997).

    Article  CAS  Google Scholar 

  5. Bierkamp, C., McLaughlin, K. J., Schwarz, H., Huber, O. & Kemler, R. Embryonic heart and skin defects in mice lacking plakoglobin. Dev. Biol. 180, 780–785 (1996).

    Article  CAS  Google Scholar 

  6. Ruiz, P. et al. _targeted mutation of plakoglobin in mice reveals essential functions of desmosomes in the embryonic heart. J. Cell Biol. 135, 215–225 (1996).

    Article  CAS  Google Scholar 

  7. Gallicano, G. I. et al. Desmoplakin is required early in development for assembly of desmosomes and cytoskeletal linkage. J. Cell Biol. 143, 2009–2022 (1998).

    Article  CAS  Google Scholar 

  8. Amagai, M., Matsuyoshi, Z. H., Andl, C. & Stanley, J. R. Toxin in bullous impetigo and staphylococcal scalded-skin syndrome _targets desmoglein 1. Nature Med. 6, 1275–1277 (2000).

    Article  CAS  Google Scholar 

  9. Fleming, T. P., Garrod, D. R. & Elsmore, A. J. Desmosome biogenesis in the mouse preimplantation embryo. Development 112, 527–539 (1991).

    CAS  PubMed  Google Scholar 

  10. Chitaev, N. A. & Troyanovsky, S. M. Direct Ca2+-dependent heterophilic interaction between desmosomal cadherins, desmoglein and desmocollin, contributes to cell–cell adhesion. J. Cell Biol. 138, 193–201 (1997).

    Article  CAS  Google Scholar 

  11. Marcozzi, C., Burdett, I. D., Buxton, R. S. & Magee, A. I. Coexpression of both types of desmosomal cadherin and plakoglobin confers strong intercellular adhesion. J. Cell Sci. 111, 495–509 (1998).

    CAS  PubMed  Google Scholar 

  12. Tselepis, C., Chidgey, M., North, A. & Garrod, D. Desmosomal adhesion inhibits invasive behaviour. Proc. Natl Acad. Sci. USA 95, 8064–8069 (1998).

    Article  CAS  Google Scholar 

  13. Garrod, D., Chidgey, M. & North, A. Desmosomes: differentiation, development, dynamics and disease. Curr. Opin. Cell Biol. 8, 670–678 (1996).

    Article  CAS  Google Scholar 

  14. Arnemann, J., Sullivan, K. H., Magee, A. I., King, I. A. & Buxton, R. S. Stratification-related expression of isoforms of the desmosomal cadherins in human epidermis. J. Cell Sci. 104, 741–750 (1993).

    CAS  PubMed  Google Scholar 

  15. Legan, P. K. et al. The bovine desmocollin family: a new gene and expression patterns reflecting epithelial cell proliferation and differentiation. J. Cell Biol. 126, 507–518 (1994).

    Article  CAS  Google Scholar 

  16. Schäfer, S., Koch, P. J. & Franke, W. W. Identification of the ubiquitous human desmoglein, Dsg2, and the expression catalogue of the desmoglein subfamily of desmosomal cadherins. Exp. Cell Res. 211, 391–399 (1994).

    Article  Google Scholar 

  17. Nuber, U. A., Schäfer, S., Schmidt, A., Koch, P. J. & Franke, W. W. The widespread human desmocollin Dsc2 and tissue-specific patterns of synthesis of various desmocollin subtypes. Eur. J. Cell Biol. 66, 69–74 (1995).

    CAS  PubMed  Google Scholar 

  18. King, I. A., O'Brien, T. J. & Buxton, R. S. Expression of the skin-type desmosomal cadherin DSC1 is closely linked to the keratinization of epithelial tissues during mouse development. J. Invest. Derm. 107, 531–538 (1996).

    Article  CAS  Google Scholar 

  19. North, A. J., Chidgey, M. A., Clarke, J. P., Bardsley, W. G. & Garrod, D. R. Distinct desmocollin isoforms occur in the same desmosomes and show reciprocally graded distributions in bovine nasal epidermis. Proc. Natl Acad. Sci. USA 93, 7701–7705 (1996).

    Article  CAS  Google Scholar 

  20. Kittrell, F. S., Oborn, C. J. & Medina, D. Development of mammary preneoplasias in vivo from mouse mammary epithelial cell lines in vitro. Cancer Res. 52, 1924–1932 (1992).

    CAS  PubMed  Google Scholar 

  21. Aggeler, J. et al. Cytodifferentiation of mouse mammary epithelial-cells cultured on a reconstituted basement-membrane reveals striking similarities to development in vivo. J. Cell Sci. 99, 407–417 (1991).

    PubMed  Google Scholar 

  22. Blaschuk, O. W., Sullivan, R., David, S. & Pouliot, Y. Identification of a cadherin cell adhesion recognition sequence. Dev. Biol. 139, 227–229 (1990).

    Article  CAS  Google Scholar 

  23. Chidgey, M. A. Desmosomes and disease. Histol. Histopathol. 12, 1159–1168 (1997).

    CAS  PubMed  Google Scholar 

  24. Wheelock, M. J., Buck, C. A., Bechtol, K. B. & Damsky, C. H. Soluble 80-kd fragment of cell-CAM 120/80 disrupts cell–cell adhesion. J. Cell. Biochem. 34, 187–202 (1987).

    Article  CAS  Google Scholar 

  25. Vleminckx, K., Vakaet, L. J., Mareel, M., Fiers, W. & van Roy, F. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 66, 107–119 (1991).

    Article  CAS  Google Scholar 

  26. Mege, R. M. et al. N-cadherin and N-CAM in myoblast fusion: compared localisation and effect of blockade by peptides and antibodies. J. Cell Sci. 103, 897–906 (1992).

    CAS  PubMed  Google Scholar 

  27. Willems, J. et al. Cadherin-dependent cell aggregation is affected by decapeptide derived from rat extracellular superoxide dismutase. FEBS Lett. 363, 289–292 (1995).

    Article  CAS  Google Scholar 

  28. Mbalaviele, G., Chen, H., Boyce, B. F., Mundy, G. R. & Yoneda, T. The role of cadherin in the generation of multinucleated osteoclasts from mononuclear precursors in murine marrow. J. Clin. Invest. 95, 2757–2765 (1995).

    Article  CAS  Google Scholar 

  29. Noë, V. et al. Inhibition of adhesion and induction of epithelial cell invasion by HAV-containing E-cadherin-specific peptides. J. Cell Sci. 112, 127–135 (1999).

    PubMed  Google Scholar 

  30. Williams, E., Williams, G., Gour, B. J., Blaschuck, O. W. and Doherty, P. A novel family of cyclic peptide antagonists suggests that N-cadherin specificity is determined by amino acids that flank the HAV motif. J. Biol. Chem. 275, 4007–4012 (2000).

    Article  CAS  Google Scholar 

  31. Amagai, M., Karpati, S., Klaus-Kovtun, V., Udey, M. C. & Stanley, J. R. Extracellular domain of pemphigus vulgaris antigen (desmogelein 3) mediates weak homophilic adhesion. J. Invest. Dermatol. 102, 402–408 (1994).

    Article  CAS  Google Scholar 

  32. Kowalczyk, A. P., Borgwardt, J. E. & Green, K. J. Analysis of desmosomal cadherin-adhesive function and stoichiometry of desmosomal cadherin–plakoglobin complexes. J. Invest. Dermatol. 107, 293–300 (1996).

    Article  CAS  Google Scholar 

  33. Chidgey, M. A. J., Clarke, J. P. & Garrod, D. R. Expression of full-length desmosomal glycoproteins (desmocollins) is not sufficient to confer strong adhesion on transfected L929 cells. J. Invest. Dermatol. 106, 689–695 (1996).

    Article  CAS  Google Scholar 

  34. Streuli, C. H., Bailey, N. & Bissell, M. J. Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell–cell interaction and morphological polarity. J. Cell Biol. 115. 1383–1395 (1991).

    Article  Google Scholar 

  35. Parrish, E. P. et al. Size heterogeneity, phosphorylation and transmembrane organisation of desmosomal glycoproteins 2 and 3 (desmocollins) in MDCK cells. J. Cell Sci. 96, 239–248 (1990).

    CAS  PubMed  Google Scholar 

  36. Vilela, M. J., Hashimoto, T., Nishikawa, T., North, A. J. & Garrod, D. A simple epithelial cell line (MDCK) shows heterogeneity of desmoglein isoforms, one resembling pemphigus vulgaris antigen. J. Cell Sci. 108, 1743–1750 (1995).

    CAS  PubMed  Google Scholar 

  37. Lorimer, J. E. et al. Cloning, sequence analysis and expression pattern of mouse desmocollin 2 (DSC2), a cadherin-like adhesion molecule. Mol. Membr. Biol. 11, 229–236 (1994).

    Article  CAS  Google Scholar 

  38. Kleinman, H. K. et al. Basement membrane complexes with biological activity. Biochemistry 25, 12–18 (1986).

    Article  Google Scholar 

  39. Gomm, J. J. et al. Isolation of pure populations of epithelial and myoepithelial cells from the normal human mammary gland using immunomagnetic separation with Dynabeads. Anal. Biochem. 226, 91–99 (1995).

    Article  CAS  Google Scholar 

  40. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  41. Page, M. J. et al. Proteomic definition of normal human luminal and myoepithelial breast cells purified from reduction mammoplasties. Proc. Natl Acad. Sci. USA 96, 12589–12594 (1999).

    Article  CAS  Google Scholar 

  42. Ealey, P. A., Taesman, M. E., Holt, S. J. & Marshall, N. T. ESTA: a bioassay system for the determination of the properties of hormones and antibodies which mimic their action. J. Mol. Endocrinol. 1, R1–R4 (1988).

  43. Klinowska, T. C. M. et al. Laminin and β1 integrins are crucial for normal mammary gland development in the mouse. Dev. Biol. 215, 13–23 (1999).

    Article  CAS  Google Scholar 

  44. Edwards, G. M. & Streuli, C. H. in Integrin Protocols (Methods in Molecular Biology Vol 129) (ed. Howlett, A.) 135–152 (Humana Press, Clifton, New Jersey, 1999).

    Book  Google Scholar 

Download references

Acknowledgements

We thank Sue Davies for performing the cell sorting and culture of the human breast epithelia, Sarah Kirk for technical assistance with the electron microscopy, and Steve Bagley for advice on the confocal microscopy. This work was supported by the Medical Research Council and the Wellcome Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Garrod.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Runswick, S., O'Hare, M., Jones, L. et al. Desmosomal adhesion regulates epithelial morphogenesis and cell positioning. Nat Cell Biol 3, 823–830 (2001). https://doi.org/10.1038/ncb0901-823

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0901-823

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
  NODES
Association 1
INTERN 1
twitter 1