Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1

Abstract

In mice, _targeted deletion of the serine protease HtrA2 (also known as Omi) causes mitochondrial dysfunction leading to a neurodegenerative disorder with parkinsonian features. In humans, point mutations in HtrA2 are a susceptibility factor for Parkinson's disease (PARK13 locus). Mutations in PINK1, a putative mitochondrial protein kinase, are associated with the PARK6 autosomal recessive locus for susceptibility to early-onset Parkinson's disease. Here we determine that HtrA2 interacts with PINK1 and that both are components of the same stress-sensing pathway. HtrA2 is phosphorylated on activation of the p38 pathway, occurring in a PINK1-dependent manner at a residue adjacent to a position found mutated in patients with Parkinson's disease. HtrA2 phosphorylation is decreased in brains of patients with Parkinson's disease carrying mutations in PINK1. We suggest that PINK1-dependent phosphorylation of HtrA2 might modulate its proteolytic activity, thereby contributing to an increased resistance of cells to mitochondrial stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HtrA2 binds PINK1.
Figure 2: HtrA2 is phosphorylated on MEKK3 activation.
Figure 3: PINK1 is necessary for HtrA2 phosphorylation.
Figure 4: Phosphorylation of HtrA2 increases its proteolytic activity.
Figure 5: Depletion of PINK1 affects wild-type but not HtrA2 knockout MEFs.

Similar content being viewed by others

References

  1. Faccio, L. et al. Characterization of a novel human serine protease that has extensive homology to bacterial heat shock endoprotease HtrA and is regulated by kidney ischemia. J. Biol. Chem. 275, 2581–2588 (2000).

    Article  CAS  Google Scholar 

  2. Gray, C. W. et al. Characterization of human HtrA2, a novel serine protease involved in the mammalian cellular stress response. Eur. J. Biochem. 267, 5699–5710 (2000).

    Article  CAS  Google Scholar 

  3. Hegde, R. et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein–caspase interaction. J. Biol. Chem. 277, 432–438 (2002).

    Article  CAS  Google Scholar 

  4. Martins, L. M. et al. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J. Biol. Chem. 277, 439–444 (2002).

    Article  CAS  Google Scholar 

  5. Suzuki, Y. et al. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell 8, 613–621 (2001).

    Article  CAS  Google Scholar 

  6. Verhagen, A. M. et al. HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J. Biol. Chem. 277, 445–454 (2002).

    Article  CAS  Google Scholar 

  7. Martins, L. M. et al. Binding specificity and regulation of the serine protease and PDZ domains of HtrA2/Omi. J. Biol. Chem. 278, 49417–49427 (2003).

    Article  CAS  Google Scholar 

  8. Yang, Q. H., Church-Hajduk, R., Ren, J., Newton, M. L. & Du, C. Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev. 17, 1487–1496 (2003).

    Article  CAS  Google Scholar 

  9. Jones, J. M. et al. Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice. Nature 425, 721–727 (2003).

    Article  CAS  Google Scholar 

  10. Martins, L. M. et al. Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by _targeted deletion in mice. Mol. Cell. Biol. 24, 9848–9862 (2004).

    Article  CAS  Google Scholar 

  11. Spiess, C., Beil, A. & Ehrmann, M. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97, 339–347 (1999).

    Article  CAS  Google Scholar 

  12. Walsh, N. P., Alba, B. M., Bose, B., Gross, C. A. & Sauer, R. T. OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 113, 61–71 (2003).

    Article  CAS  Google Scholar 

  13. Strauss, K. M. et al. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease. Hum. Mol. Genet. 14, 2099–2111 (2005).

    Article  CAS  Google Scholar 

  14. Cilenti, L. et al. Regulation of HAX-1 anti-apoptotic protein by Omi/HtrA2 protease during cell death. J. Biol. Chem. 279, 50295–50301 (2004).

    Article  CAS  Google Scholar 

  15. Valente, E. M. et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304, 1158–1160 (2004).

    Article  CAS  Google Scholar 

  16. Bonifati, V. et al. Early-onset parkinsonism associated with PINK1 mutations: frequency, genotypes, and phenotypes. Neurology 65, 87–95 (2005).

    Article  CAS  Google Scholar 

  17. Hatano, Y. et al. Novel PINK1 mutations in early-onset parkinsonism. Ann. Neurol. 56, 424–427 (2004).

    Article  CAS  Google Scholar 

  18. Li, Y. et al. Clinicogenetic study of PINK1 mutations in autosomal recessive early-onset parkinsonism. Neurology 64, 1955–1957 (2005).

    Article  CAS  Google Scholar 

  19. Rogaeva, E. et al. Analysis of the PINK1 gene in a large cohort of cases with Parkinson disease. Arch. Neurol. 61, 1898–1904 (2004).

    Article  Google Scholar 

  20. Rohe, C. F. et al. Homozygous PINK1 C-terminus mutation causing early-onset parkinsonism. Ann. Neurol. 56, 427–431 (2004).

    Article  CAS  Google Scholar 

  21. Obenauer, J. C., Cantley, L. C. & Yaffe, M. B. Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res. 31, 3635–3641 (2003).

    Article  CAS  Google Scholar 

  22. Kuma, Y. et al. BIRB796 inhibits all p38 MAPK isoforms in vitro and in vivo. J. Biol. Chem. 280, 19472–19479 (2005).

    Article  CAS  Google Scholar 

  23. Chandel, N. S. et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl Acad. Sci. USA 95, 11715–11720 (1998).

    Article  CAS  Google Scholar 

  24. Li, W. et al. Structural insights into the pro-apoptotic function of mitochondrial serine protease HtrA2/Omi. Nature Struct. Biol. 9, 436–441 (2002).

    Article  CAS  Google Scholar 

  25. Wilken, C., Kitzing, K., Kurzbauer, R., Ehrmann, M. & Clausen, T. Crystal structure of the DegS stress sensor: How a PDZ domain recognizes misfolded protein and activates a protease. Cell 117, 483–494 (2004).

    Article  CAS  Google Scholar 

  26. Greenamyre, J. T. & Hastings, T. G. Biomedicine. Parkinson's—divergent causes, convergent mechanisms. Science 304, 1120–1122 (2004).

    Article  CAS  Google Scholar 

  27. Paisan-Ruiz, C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44, 595–600 (2004).

    Article  CAS  Google Scholar 

  28. Ramirez, A. et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nature Genet. 38, 1184–1191 (2006).

    Article  CAS  Google Scholar 

  29. Zimprich, A. et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601–607 (2004).

    Article  CAS  Google Scholar 

  30. Beilina, A. et al. Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proc. Natl Acad. Sci. USA 102, 5703–5708 (2005).

    Article  CAS  Google Scholar 

  31. Silvestri, L. et al. Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum. Mol. Genet. 14, 3477–3492 (2005).

    Article  CAS  Google Scholar 

  32. Sim, C. H. et al. C-terminal truncation and Parkinson's disease-associated mutations down-regulate the protein serine/threonine kinase activity of PTEN-induced kinase-1. Hum. Mol. Genet. 15, 3251–3262 (2006).

    Article  CAS  Google Scholar 

  33. Harper, S. J. & Wilkie, N. MAPKs: new _targets for neurodegeneration. Expert Opin. Ther. _targets 7, 187–200 (2003).

    Article  CAS  Google Scholar 

  34. Pridgeon, J. W., Olzmann, J. A., Chin, L. S. & Li, L. PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLOS Biol. 5, e172 (2007).

    Article  Google Scholar 

  35. Young, J. C. & Hartl, F. U. A stress sensor for the bacterial periplasm. Cell 113, 1–2 (2003).

    Article  CAS  Google Scholar 

  36. Abou-Sleiman, P. M. et al. A heterozygous effect for PINK1 mutations in Parkinson's disease? Ann. Neurol. 60, 414–419 (2006).

    Article  CAS  Google Scholar 

  37. Gandhi, S. et al. PINK1 protein in normal human brain and Parkinson's disease. Brain 129, 1720–1731 (2006).

    Article  CAS  Google Scholar 

  38. Vyas, S. et al. Differentiation-dependent sensitivity to apoptogenic factors in PC12 cells. J. Biol. Chem. 279, 30983–30993 (2004).

    Article  CAS  Google Scholar 

  39. Evan, G. I., Lewis, G. K., Ramsay, G. & Bishop, J. M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol. 5, 3610–3616 (1985).

    Article  CAS  Google Scholar 

  40. Garner, A. P., Weston, C. R., Todd, D. E., Balmanno, K. & Cook, S. J. ΔMEKK3:ER* activation induces a p38α/β2-dependent cell cycle arrest at the G2 checkpoint. Oncogene 21, 8089–8104 (2002).

    Article  CAS  Google Scholar 

  41. Rytomaa, M., Lehmann, K. & Downward, J. Matrix detachment induces caspase-dependent cytochrome c release from mitochondria: inhibition by PKB/Akt but not Raf signalling. Oncogene 19, 4461–4468 (2000).

    Article  CAS  Google Scholar 

  42. Abraham, V. C., Taylor, D. L. & Haskins, J. R. High content screening applied to large-scale cell biology. Trends Biotechnol. 22, 15–22 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Hancock for valuable advice, N. Totty for mass spectrometric analysis, V. Dawson, NWW, RJH and ED were supported by the MRC SG0400000 grant and the PDS NWW was supported by the W-T-CRF. G. Schiavo, A. Schulze and K. Dimmer for materials, S. Loh for help with the Cellomics KSR microscopy system, and A. Borg and T. Simmonds for assistance in the preparation of recombinant HtrA2. K.K. was funded by a PhD studentship from Boehringer Ingelheim Fonds. This work was supported by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Miguel Martins or Julian Downward.

Supplementary information

Supplementary Information

Supplementary Figures 1, 2, 3, 4, 5, Supplementary Materials and Methods (PDF 1947 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plun-Favreau, H., Klupsch, K., Moisoi, N. et al. The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1. Nat Cell Biol 9, 1243–1252 (2007). https://doi.org/10.1038/ncb1644

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1644

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
  NODES
INTERN 1
Note 1
twitter 1