Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence

Abstract

The homeodomain protein IPF1 (also known as IDX1, STF1 and PDX1; see Methods) is critical for development of the pancreas in mice and is a key factor for the regulation of the insulin gene in the β-cells of the endocrine pancreas1–6. _targeted disruption of the Ipf1 gene encoding IPF1 in transgenic mice results in a failure of the pancreas to develop (pancreatic agenesis)4–7. Here, we report the identification of a single nucleotide deletion within codon 63 of the human IPF1 gene (13q12.1) in a patient with pancreatic agenesis. The patient is homozygous for the point deletion, whereas both parents are heterozygotes for the same mutation. The deletion was not found in 184 chromosomes from normal individuals, indicating that the mutation is unlikely to be a rare polymorphism. The point deletion causes a frame shift at the C-terminal border of the transactivation domain of IPF1 resulting in the translation of 59 novel codons before termination, aminoproximal to the homeodomain essential for DNA binding. Expression of mutant IPF1 in Cos-1 cells confirms the expression of a prematurely terminated truncated protein of 16 kD. Thus, the affected patient should have no functional IPF1 protein. Given the essential role of IPF1 in pancreas development, it is likely that this autosomal recessive mutation is the cause of the pancreatic agenesis phenotype in this patient. Thus, IPF1 appears to be a critical regulator of pancreas development in humans as well as mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Miller, C.P., McGehee, R. & Habener, J.F. IDX-1: a new homeodomain transcription factor expressed in rat pancreatic islets and duodenum that transactivates the somatostatin gene. EMBO J. 13, 1145–1156 (1994).

    Article  CAS  Google Scholar 

  2. Leonard, J. et al. Characterization of somatostatin transactivating factor-1, a novel homeobox factor that stimulates somatostatin expression in pnacreatic islet cells. Mol. Endocr. 7, 1275–1283 (1993).

    CAS  Google Scholar 

  3. Ohlsson, H., Karlsson, K. & Edlund, T. IPF1, a homeodomain-containing transactivator of the insulin gene. EMBO J. 12, 4251–4259 (1993).

    Article  CAS  Google Scholar 

  4. Jonnson, J., Carlsson, L., Edlund, T. & Edlund, H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371, 606–609 (1994).

    Article  Google Scholar 

  5. Peshavaria, M. et al. XIHBox 8, an endoderm-specific Xenopus homeodomain protein, is closely related to a mammalian insulin gene transcription factor. Mol. Endocr. 8, 806–816 (1994).

    CAS  Google Scholar 

  6. Peers, B., Leonard, J., Sharma, S., Teitelman, G. & Montminy, M. Insulin expression in pancreatic islet cells relies on cooperative interactions between the helix loop helix factor E47 and the homeobox factor STF-1. Mol. Endocr. 8, 1798–1806 (1994).

    CAS  Google Scholar 

  7. Offield, M.F. et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122, 983–995 (1996).

    CAS  Google Scholar 

  8. Wright, N.M., Metzger, D.L., Borowitz, S.M. & Clarke, W.L. Permanent neonatal diabetes mellitus and pancreatic exocrine insufficiency resulting from congenital pancreatic agenesis. Am. J. Dis. Child. 147, 607–609 (1993).

    Article  CAS  Google Scholar 

  9. Howard, C.P. et al. Long-term survival in a case of functional pancreatic agenesis. J. Pediat. 97, 786–789.(1980).

    Article  CAS  Google Scholar 

  10. Widnes, J.A. et al. Permanent neonatal diabetes in an infant of an insulin-dependent mother. J. Pediat. 100, 926 (1982).

    Article  Google Scholar 

  11. Lemons, J.A., Ridenour, R. & Orsini, E.N. Congenital absence of the pancreas and intrauterine growth retardation. Pediatrics 64, 255–257.(1979).

    CAS  PubMed  Google Scholar 

  12. Mehes, K. & Vamosk, G.M. Agenesis of pancreas and gallbladder in infant of incest. Acta Paediat. Acad. Sci. Hung. 17, 175–176 (1976).

    CAS  PubMed  Google Scholar 

  13. Dourov, N. & Buyl-Strouvens, M.L. Agensie du pancreas. Arch. Fr. Pediat. 26, 641–650 (1969).

    CAS  PubMed  Google Scholar 

  14. Sherwood, W.G., Chance, G.W. & Hill, D.E. A new syndrome of pancreatic agenesis. The role of insulin and glucagon in somatic and cell growth. Pediat Res. 8, 360 (1995).

    Article  Google Scholar 

  15. Stoffel, M. et al. Localization of human homeodomain transcription factor insulin promoter factor (IPF-1) to chromosome band 13q 12.1. Genomics 28, 125–126.

    Article  CAS  Google Scholar 

  16. Inoue, H. et al. Isolation, characterization, and chromosomal mapping of the human insulin promoter factor 1 (IPF-1) Gene. Diabetes 45, 789–794 (1996).

    Article  CAS  Google Scholar 

  17. Peers, B., Sharma, S., Johnson, T., Kamps, M. & Montminy, M. The pancreatic islet factor STF-1 binds cooperatively with Pbx to regulatory element in the somatostatin promoter: importance of the FPWMK motif and of the homeodomain. Mol. Cell. Biol. 15, 7091–7097 (1995).

    Article  CAS  Google Scholar 

  18. Lu, M., Miller, C.P. & Habener, J.F. Functional regions of the homeodomain protein IDX-1 required for transactivation of the rat somatostatin gene. Endocrinology 137, 2959–2967 (1996).

    Article  CAS  Google Scholar 

  19. Carroll, P.B., Finegold, D.N., Becker, D.J., Locker, J.D. & Drash, A.L. Hypoplasia of the pancreas in a patient with type I diabetes mellitus. Pancreas 7, 21–25 (1992).

    Article  CAS  Google Scholar 

  20. Dodge, J.A. & Laurence, K.M. Congenital absence of the islets of Langerhans. Arch. Dis. Child. 52, 411–413 (1977).

    Article  CAS  Google Scholar 

  21. Winter, W.E. et al. Congenital pancreatic hypoplasia: a syndrome of exocrine and endocrine pancreatic insufficiency. J. Pediat. 109, 465–468 (1986).

    Article  CAS  Google Scholar 

  22. Sharma, A., Olson, L.K., Robertson, R.P. & Stein, R. The reduction of insulin gene transcription in HIT-T15 β cells chronically exposed to high glucose concentration is associated with the loss of RIPE3b1 and STF-1 transcription factor expression. Molec. Endocr. 9, 1127–1134 (1995).

    CAS  PubMed  Google Scholar 

  23. Olson, L.K. et al. Reduction of insulin gene transcription in HIT-T15 β cells chronically exposed to high glucose concentration is associated with the loss of STF-1 transcription factor expression. Proc. Natl. Acad. Sci. U.S.A. 92, 9127–9131 (1995).

    Article  CAS  Google Scholar 

  24. Sambrook, J., Fritsch, E.F. & Maniatis, T., Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  25. Wood, W.I., Gtischier, J., Lasky, L.A. & Lawn, R.M. Base composition-independent hybridization in tetramethylammonium chloride: a method for oligonucleotide screening of highly complex gene libraries. Proc. Natl. Acad. Sci. USA 82, 1585–1588 (1985).

    Article  CAS  Google Scholar 

  26. Chen, W.-J., Andes, D.A., Goldstein, J.L., Russel, D.W. & Brown, M.S. cDNA cloning and expression of the peptide-binding (3 subunit of rat p21ras farnesyl transferase, the counterpart of yeast DPR17RAM1. Cell 66, 327–334 (1991).

    Article  CAS  Google Scholar 

  27. Ausubel, F.M. et al. Current Protocols in Molecular Biology (John Wiley & Sons, New York, 1995).

  28. Schreiber, E., Matthias, P., Mueller, M.M. & Schaffner, W. Rapid detection of octamer binding proteins with “miniextracts” from a small number of cells. Nucl. Acid. Res. 17, 6419 (1989).

    Article  CAS  Google Scholar 

  29. Ron, D. & Habener, J.F. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev. 6, 439–453 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoffers, D., Zinkin, N., Stanojevic, V. et al. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 15, 106–110 (1997). https://doi.org/10.1038/ng0197-106

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0197-106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
  NODES
INTERN 1
Note 1
twitter 1