Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inflammation meets cancer, with NF-κB as the matchmaker

Abstract

Inflammation is a fundamental protective response that sometimes goes awry and becomes a major cofactor in the pathogenesis of many chronic human diseases, including cancer. Here we review the evolutionary relationship and opposing functions of the transcription factor NF-κB in inflammation and cancer. Although it seems to fulfill a distinctly tumor-promoting role in many types of cancer, NF-κB has a confounding role in certain tumors. Understanding the activity and function of NF-κB in the context of tumorigenesis is critical for its successful taming, an important challenge for modern cancer biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hypothetical model for the generation of colorectal tumors as a result of interplay among intestinal crypt microflora NF-κB activation, and mutatagenesis mechanisms in intestinal stem cell.
Figure 2: Pro- and anti-inflammatory functions of NF-κB and their relationship to tumorigenesis.
Figure 3: Pro- and anti-tumorigenic effects of NF-κB activation in cancer cells and their microenvironment.

Similar content being viewed by others

References

  1. Balkwill, F. & Mantovani, A. Cancer and inflammation: implications for pharmacology and therapeutics. Clin. Pharmacol. Ther. 87, 401–406 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Biswas, S.K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889–896 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Grivennikov, S.I., Greten, F.R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Erez, N. & Coussens, L.M. Leukocytes as paracrine regulators of metastasis and determinants of organ-specific colonization. Int. J. Cancer 128, 2536–2544 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Qian, B.Z. & Pollard, J.W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Medzhitov, R. Inflammation 2010: new adventures of an old flame. Cell 140, 771–776 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Muller, W.E., Korzhev, M., Le Pennec, G., Muller, I.M. & Schroder, H.C. Origin of metazoan stem cell system in sponges: first approach to establish the model (Suberites domuncula). Biomol. Eng. 20, 369–379 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Barnes, P.J. & Karin, M. Nuclear factor-κB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 336, 1066–1071 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Tak, P.P. & Firestein, G.S. NF-κB: a key role in inflammatory diseases. J. Clin. Invest. 107, 7–11 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Foxwell, B.M., Bondeson, J., Brennan, F. & Feldmann, M. Adenoviral transgene delivery provides an approach to identifying important molecular processes in inflammation: evidence for heterogenecity in the requirement for NFκB in tumour necrosis factor production. Ann. Rheum. Dis. 59 (Suppl 1), i54–i59 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lawrence, T., Gilroy, D.W., Colville-Nash, P.R. & Willoughby, D.A. Possible new role for NF-κB in the resolution of inflammation. Nat. Med. 7, 1291–1297 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Augustin, R., Fraune, S. & Bosch, T.C. How Hydra senses and destroys microbes. Semin. Immunol. 22, 54–58 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Hemmrich, G., Miller, D.J. & Bosch, T.C. The evolution of immunity: a low-life perspective. Trends Immunol. 28, 449–454 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Lange, C. et al. Defining the origins of the NOD-like receptor system at the base of animal evolution. Mol. Biol. Evol. 28, 1687–1702 (2007).

    Article  CAS  Google Scholar 

  15. Srivastava, M. et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466, 720–726 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sarkar, D., Desalle, R. & Fisher, P.B. Evolution of MDA-5/RIG-I-dependent innate immunity: independent evolution by domain grafting. Proc. Natl. Acad. Sci. USA 105, 17040–17045 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Domazet-Loso, T. & Tautz, D. Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in metazoa. BMC Biol. 8, 66 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Guttridge, D.C., Albanese, C., Reuther, J.Y., Pestell, R.G. & Baldwin, A.S. Jr. NF-κB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol. Cell. Biol. 19, 5785–5799 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. La Rosa, F.A., Pierce, J.W. & Sonenshein, G.E. Differential regulation of the c-myc oncogene promoter by the NF-κB rel family of transcription factors. Mol. Cell. Biol. 14, 1039–1044 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Duckett, C.S. Apoptosis and NF-κB: the FADD connection. J. Clin. Invest. 109, 579–580 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dhawan, S., Singh, S. & Aggarwal, B.B. Induction of endothelial cell surface adhesion molecules by tumor necrosis factor is blocked by protein tyrosine phosphatase inhibitors: role of the nuclear transcription factor NF-κB. Eur. J. Immunol. 27, 2172–2179 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Collins, T. et al. Transcriptional regulation of endothelial cell adhesion molecules: NF-κB and cytokine-inducible enhancers. FASEB J. 9, 899–909 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Cao, Y. & Karin, M. NF-κB in mammary gland development and breast cancer. J. Mammary Gland Biol. Neoplasia 8, 215–223 (2003).

    Article  PubMed  Google Scholar 

  24. Snapper, C.M. et al. B cells from p50/NF-κB knockout mice have selective defects in proliferation, differentiation, germ-line CH transcription, and Ig class switching. J. Immunol. 156, 183–191 (1996).

    CAS  PubMed  Google Scholar 

  25. Nickols, J.C., Valentine, W., Kanwal, S. & Carter, B.D. Activation of the transcription factor NF-κB in Schwann cells is required for peripheral myelin formation. Nat. Neurosci. 6, 161–167 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Cordero, J.B. et al. Oncogenic Ras diverts a host TNF tumor suppressor activity into tumor promoter. Dev. Cell 18, 999–1011 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Feng, Y., Santoriello, C., Mione, M., Hurlstone, A. & Martin, P. Live imaging of innate immune cell sensing of transformed cells in zebrafish larvae: parallels between tumor initiation and wound inflammation. PLoS Biol. 8, e1000562 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Squires, D.F. Neoplasia in a coral? Science 148, 503–505 (1965).

    Article  CAS  PubMed  Google Scholar 

  29. Wiebecke, B., Brandts, A. & Eder, M. Epithelial proliferation and morphogenesis of hyperplastic adenomatous and villous polyps of the human colon. Virchows Arch. A Pathol. Anat. Histol. 364, 35–49 (1974).

    Article  CAS  PubMed  Google Scholar 

  30. Cole, J.W. & McKalen, A. Studies on the morphogenesis of adenomatous polyps in the human Colon. Cancer 16, 998–1002 (1963).

    Article  CAS  PubMed  Google Scholar 

  31. Dvorak, H.F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986).

    Article  CAS  PubMed  Google Scholar 

  32. Eaves, C.J. Cancer stem cells: Here, there, everywhere? Nature 456, 581–582 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Shackleton, M., Quintana, E., Fearon, E.R. & Morrison, S.J. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138, 822–829 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415–418 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Apidianakis, Y., Pitsouli, C., Perrimon, N. & Rahme, L. Synergy between bacterial infection and genetic predisposition in intestinal dysplasia. Proc. Natl. Acad. Sci. USA 106, 20883–20888 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Foster, S.L., Hargreaves, D.C. & Medzhitov, R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447, 972–978 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Bredel, M. et al. NFKBIA deletion in glioblastomas. N. Engl. J. Med. 364, 627–637 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bivona, T.G. et al. FAS and NF-κB signalling modulate dependence of lung cancers on mutant EGFR. Nature 471, 523–526 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Smale, S. Hierarchies of NF-κB _target-gene regulation. Nat. Immunol. 12, 689–694 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bonizzi, G. & Karin, M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25, 280–288 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Gewirtz, A.T. et al. Salmonella typhimurium induces epithelial IL-8 expression via Ca(2+)-mediated activation of the NF-κB pathway. J. Clin. Invest. 105, 79–92 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lavon, I. et al. High susceptibility to bacterial infection, but no liver dysfunction, in mice compromised for hepatocyte NF-κB activation. Nat. Med. 6, 573–577 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Kaser, A., Zeissig, S. & Blumberg, R.S. Inflammatory bowel disease. Annu. Rev. Immunol. 28, 573–621 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Neurath, M.F., Pettersson, S., Meyer zum Buschenfelde, K.H. & Strober, W. Local administration of antisense phosphorothioate oligonucleotides to the p65 subunit of NF-κ B abrogates established experimental colitis in mice. Nat. Med. 2, 998–1004 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Tak, P.P. et al. Inhibitor of nuclear factor κB kinase β is a key regulator of synovial inflammation. Arthritis Rheum. 44, 1897–1907 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Lizzul, P.F. et al. Differential expression of phosphorylated NF-κB/RelA in normal and psoriatic epidermis and downregulation of NF-κB in response to treatment with etanercept. J. Invest. Dermatol. 124, 1275–1283 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Williams, R.O., Paleolog, E. & Feldmann, M. Cytokine inhibitors in rheumatoid arthritis and other autoimmune diseases. Curr. Opin. Pharmacol. 7, 412–417 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. MacMaster, J.F. et al. An inhibitor of IκB kinase, BMS-345541, blocks endothelial cell adhesion molecule expression and reduces the severity of dextran sulfate sodium-induced colitis in mice. Inflamm. Res. 52, 508–511 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Gillooly, K.M. et al. Periodic, partial inhibition of IκB kinase β-mediated signaling yields therapeutic benefit in preclinical models of rheumatoid arthritis. J. Pharmacol. Exp. Ther. 331, 349–360 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Miagkov, A.V. et al. NF-κB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proc. Natl. Acad. Sci. USA 95, 13859–13864 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schopf, L. et al. IKKβ inhibition protects against bone and cartilage destruction in a rat model of rheumatoid arthritis. Arthritis Rheum. 54, 3163–3173 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Pitts, W.J., Kempson, J. & John, E.M. (ed. Macor, J.E.) in Annual Reports in Medicinal Chemistry, Vol. 43, 155–170 (Academic, 2008).

    Article  CAS  Google Scholar 

  54. Bohrer, H. et al. Role of NFκB in the mortality of sepsis. J. Clin. Invest. 100, 972–985 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Greten, F.R. et al. IKK β links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Nenci, A. et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446, 557–561 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Pasparakis, M. Regulation of tissue homeostasis by NF-κB signalling: implications for inflammatory diseases. Nat. Rev. Immunol. 9, 778–788 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Greten, F.R. et al. NF-κB is a negative regulator of IL-1β secretion as revealed by genetic and pharmacological inhibition of IKKβ. Cell 130, 918–931 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bruey, J.M. et al. Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell 129, 45–56 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Hsu, L.C. et al. IL-1β-driven neutrophilia preserves antibacterial defense in the absence of the kinase IKKβ. Nat. Immunol. 12, 144–150 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Genovese, M.C. et al. Combination therapy with etanercept and anakinra in the treatment of patients with rheumatoid arthritis who have been treated unsuccessfully with methotrexate. Arthritis Rheum. 50, 1412–1419 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Apte, R.N. et al. Effects of micro-environment- and malignant cell-derived interleukin-1 in carcinogenesis, tumour invasiveness and tumour-host interactions. Eur. J. Cancer 42, 751–759 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Ruland, J. Return to homeostasis—downregulation of NF-κB responses. Nat. Immunol. 12, 709–714 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. O'Dea, E. & Hoffmann, A. The regulatory logic of the NF-κB signaling system. Cold Spring Harb. Perspect. Biol. 2, a000216 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Chen, L.W. et al. The two faces of IKK and NF-κB inhibition: prevention of systemic inflammation but increased local injury following intestinal ischemia-reperfusion. Nat. Med. 9, 575–581 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Eckmann, L. et al. Opposing functions of IKK β during acute and chronic intestinal inflammation. Proc. Natl. Acad. Sci. USA 105, 15058–15063 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gilmore, T.D. The Re1/NF-κB/IκB signal transduction pathway and cancer. Cancer Treat. Res. 115, 241–265 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Cabanes, A. et al. Enhancement of antitumor activity of polyethylene glycol-coated liposomal doxorubicin with soluble and liposomal interleukin 2. Clin. Cancer Res. 5, 687–693 (1999).

    CAS  PubMed  Google Scholar 

  69. Franzoso, G. et al. The candidate oncoprotein Bcl-3 is an antagonist of p50/NF-κB-mediated inhibition. Nature 359, 339–342 (1992).

    Article  CAS  PubMed  Google Scholar 

  70. Neri, A. et al. B cell lymphoma-associated chromosomal translocation involves candidate oncogene lyt-10, homologous to NF-κ B p50. Cell 67, 1075–1087 (1991).

    Article  CAS  PubMed  Google Scholar 

  71. Karin, M., Cao, Y., Greten, F.R. & Li, Z.W. NF-κB in cancer: from innocent bystander to major culprit. Nat. Rev. Cancer 2, 301–310 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Willis, T.G. et al. Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell 96, 35–45 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Uren, A.G. et al. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell 6, 961–967 (2000).

    CAS  PubMed  Google Scholar 

  74. Hacker, H. & Karin, M. Regulation and function of IKK and IKK-related kinases. Sci. STKE 2006, re13 (2006).

    Article  PubMed  Google Scholar 

  75. Wertz, I.E. & Dixit, V.M. Signaling to NF-κB: regulation by ubiquitination. Cold Spring Harb. Perspect. Biol. 2, a003350 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Lenz, G. et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 319, 1676–1679 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Ngo, V.N. et al. A loss-of-function RNA interference screen for molecular _targets in cancer. Nature 441, 106–110 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Staudt, L.M. Oncogenic activation of NF-κB. Cold Spring Harb. Perspect. Biol. 2, a000109 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Ngo, V.N. et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 470, 115–119 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Annunziata, C.M. et al. Frequent engagement of the classical and alternative NF-κB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12, 115–130 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Keats, J.J. et al. Promiscuous mutations activate the noncanonical NF-κB pathway in multiple myeloma. Cancer Cell 12, 131–144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chapman, M.A. et al. Initial genome sequencing and analysis of multiple myeloma. Nature 471, 467–472 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yaron, A. et al. Identification of the receptor component of the IκBα-ubiquitin ligase. Nature 396, 590–594 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Liao, G., Zhang, M., Harhaj, E.W. & Sun, S.C. Regulation of the NF-κB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. J. Biol. Chem. 279, 26243–26250 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Vallabhapurapu, S. & Karin, M. Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693–733 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Sasaki, Y. et al. NIK overexpression amplifies, whereas ablation of its TRAF3-binding domain replaces BAFF:BAFF-R-mediated survival signals in B cells. Proc. Natl. Acad. Sci. USA 105, 10883–10888 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lam, L.T. et al. Compensatory IKKα activation of classical NF-κB signaling during IKKβ inhibition identified by an RNA interference sensitization screen. Proc. Natl. Acad. Sci. USA 105, 20798–20803 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pflueger, D. et al. Discovery of non-ETS gene fusions in human prostate cancer using next-generation RNA sequencing. Genome Res. (2010).

  89. Stratton, M.R., Campbell, P.J. & Futreal, P.A. The cancer genome. Nature 458, 719–724 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Boehm, J.S. et al. Integrative genomic approaches identify IKBKE as a breast cancer oncogene. Cell 129, 1065–1079 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Cao, Y., Luo, J.L. & Karin, M. IκB kinase α kinase activity is required for self-renewal of ErbB2/Her2-transformed mammary tumor-initiating cells. Proc. Natl. Acad. Sci. USA 104, 15852–15857 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gonzalez-Suarez, E. et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 468, 103–107 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Schramek, D. et al. Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature 468, 98–102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tan, W. et al. Tumor-infiltrating T regulatory cells stimulate mammary cancer metastasis through RANKL-RANK signaling. Nature 470, 548–553 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Iliopoulos, D., Hirsch, H.A. & Struhl, K. An epigenetic switch involving NF-κB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139, 693–706 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ammirante, M., Luo, J.L., Grivennikov, S., Nedospasov, S. & Karin, M. B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464, 302–305 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Luo, J.L. et al. Nuclear cytokine-activated IKKα controls prostate cancer metastasis by repressing Maspin. Nature 446, 690–694 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Pikarsky, E. et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461–466 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Grivennikov, S. et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15, 103–113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Popivanova, B.K. et al. Blocking TNF-α in mice reduces colorectal carcinogenesis associated with chronic colitis. J. Clin. Invest. 118, 560–570 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Terzic, J., Grivennikov, S., Karin, E. & Karin, M. Inflammation and colon cancer. Gastroenterology 138, 2101–2114 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Karin, M. Nuclear factor-κB in cancer development and progression. Nature 441, 431–436 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Yu, H., Kortylewski, M. & Pardoll, D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat. Rev. Immunol. 7, 41–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Colotta, F., Allavena, P., Sica, A., Garlanda, C. & Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30, 1073–1081 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Bollrath, J. et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 15, 91–102 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Maeda, S., Kamata, H., Luo, J.L., Leffert, H. & Karin, M. IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121, 977–990 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. He, G. et al. Hepatocyte IKKβ /NF-κB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell 17, 286–297 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yang, J. et al. Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFκB. Genes Dev. 21, 1396–1408 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mantovani, A. & Sica, A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr. Opin. Immunol. 22, 231–237 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Hagemann, T. et al. 'Re-educating' tumor-associated macrophages by _targeting NF-κB. J. Exp. Med. 205, 1261–1268 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Porta, C. et al. Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor κB. Proc. Natl. Acad. Sci. USA 106, 14978–14983 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Erez, N., Truitt, M., Olson, P., Arron, S.T. & Hanahan, D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-κB-dependent manner. Cancer Cell 17, 135–147 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Yu, H., Pardoll, D. & Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9, 798–809 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Markovina, S. et al. Bone marrow stromal cells from multiple myeloma patients uniquely induce bortezomib resistant NF-κB activity in myeloma cells. Mol. Cancer 9, 176 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Dajee, M. et al. NF-κB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 421, 639–643 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Acosta, J.C. et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006–1018 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Hui, L. et al. p38α suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathway. Nat. Genet. 39, 741–749 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Sakurai, T. et al. Hepatocyte necrosis induced by oxidative stress and IL-1α release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 14, 156–165 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Luedde, T. et al. Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 11, 119–132 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Inokuchi, S. et al. Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis, and carcinogenesis. Proc. Natl. Acad. Sci. USA 107, 844–849 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Bettermann, K. et al. TAK1 suppresses a NEMO-dependent but NF-κB-independent pathway to liver cancer. Cancer Cell 17, 481–496 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Tu, S. et al. Overexpression of interleukin-1β induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14, 408–419 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Haybaeck, J. et al. A lymphotoxin-driven pathway to hepatocellular carcinoma. Cancer Cell 16, 295–308 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Naugler, W.E. et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317, 121–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Dunleavy, K. et al. Differential efficacy of bortezomib plus chemotherapy within molecular subtypes of diffuse large B-cell lymphoma. Blood 113, 6069–6076 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Biswas, D.K. et al. NF-κ B activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proc. Natl. Acad. Sci. USA 101, 10137–10142 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Compagno, M. et al. Mutations of multiple genes cause deregulation of NF-κB in diffuse large B-cell lymphoma. Nature 459, 717–721 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Amschler, K. et al. NF-κB inhibition through proteasome inhibition or IKKβ blockade increases the susceptibility of melanoma cells to cytostatic treatment through distinct pathways. J. Invest. Dermatol. 130, 1073–1086 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Lam, L.T. et al. Small molecule inhibitors of IκB kinase are selectively toxic for subgroups of diffuse large B-cell lymphoma defined by gene expression profiling. Clin. Cancer Res. 11, 28–40 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Lee, D.F. & Hung, M.C. Advances in _targeting IKK and IKK-related kinases for cancer therapy. Clin. Cancer Res. 14, 5656–5662 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Schon, M. et al. KINK-1, a novel small-molecule inhibitor of IKKβ, and the susceptibility of melanoma cells to antitumoral treatment. J. Natl. Cancer Inst. 100, 862–875 (2008).

    Article  PubMed  CAS  Google Scholar 

  132. Nakanishi, C. & Toi, M. Nuclear factor-κB inhibitors as sensitizers to anticancer drugs. Nat. Rev. Cancer 5, 297–309 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Kiessling, M.K. et al. Inhibition of constitutively activated nuclear factor-κB induces reactive oxygen species- and iron-dependent cell death in cutaneous T-cell lymphoma. Cancer Res. 69, 2365–2374 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Pritchard, J.R. et al. Three-kinase inhibitor combination recreates multipathway effects of a geldanamycin analogue on hepatocellular carcinoma cell death. Mol. Cancer Ther. 8, 2183–2192 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Adams, J. & Kauffman, M. Development of the proteasome inhibitor Velcade (bortezomib). Cancer Invest. 22, 304–311 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Gasparian, A.V. et al. _targeting transcription factor NFκB: comparative analysis of proteasome and IKK inhibitors. Cell Cycle 8, 1559–1566 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Hertlein, E. et al. 17-DMAG _targets the nuclear factor-κB family of proteins to induce apoptosis in chronic lymphocytic leukemia: clinical implications of HSP90 inhibition. Blood 116, 45–53 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wright, J.J. Combination therapy of bortezomib with novel _targeted agents: an emerging treatment strategy. Clin. Cancer Res. 16, 4094–4104 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Milhollen, M.A. et al. MLN4924, a NEDD8-activating enzyme inhibitor, is active in diffuse large B-cell lymphoma models: rationale for treatment of NF-κB-dependent lymphoma. Blood 116, 1515–1523 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Kanarek, N., London, N., Schueler-Furman, O. & Ben-Neriah, Y. Ubiquitination and degradation of the inhibitors of NF-κB. Cold Spring Harb. Perspect. Biol. 2, a000166 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Kanarek, N. et al. Spermatogenesis rescue in a mouse deficient for the ubiquitin ligase SCFβ-TrCP by single substrate depletion. Genes Dev. 24, 470–477 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lavon, I. et al. Nuclear factor-κB protects the liver against genotoxic stress and functions independently of p53. Cancer Res. 63, 25–30 (2003).

    CAS  PubMed  Google Scholar 

  143. Rothwell, P.M. et al. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet 377, 31–41 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. Midgley, R.S. et al. Phase III randomized trial assessing rofecoxib in the adjuvant setting of colorectal cancer: final results of the VICTOR trial. J. Clin. Oncol. 28, 4575–4580 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Coussens, L.M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Karin, M. & Greten, F.R. NF-κB: linking inflammation and immunity to cancer development and progression. Nat. Rev. Immunol. 5, 749–759 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Hanahan, D. & Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Berenblum, I. Challenging problems in cocarcinogenesis. Cancer Res. 45, 1917–1921 (1985).

    CAS  PubMed  Google Scholar 

  149. Endo, Y., Marusawa, H. & Chiba, T. Involvement of activation-induced cytidine deaminase in the development of colitis-associated colorectal cancers. J. Gastroenterol. 46 (Suppl 1), 6–10 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Elyada, E. et al. CKIα ablation highlights a critical role for p53 in invasiveness control. Nature 470, 409–413 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Yin, J. et al. p53 point mutations in dysplastic and cancerous ulcerative colitis lesions. Gastroenterology 104, 1633–1639 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Pikarsky, I. Alkalay-Snir and A. Pribluda for comments and discussions. Supported by the Israel Science Foundation, Israel Cancer Research Fund, the Crohn's & Colitis Foundation of America, the German-Israeli Foundation, Dr. Miriam and Sheldon G. Adelson Medical Research Foundation, the US National Institutes of Health and the American Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinon Ben-Neriah or Michael Karin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Neriah, Y., Karin, M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat Immunol 12, 715–723 (2011). https://doi.org/10.1038/ni.2060

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2060

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
  NODES
admin 1
INTERN 1
twitter 1